3EMJIEBMOPAAHUIA GAKYLTET KA®EAPA IHO3EMHUX MOB

H. TOPOAELIbKA, H. TABPULLIKIB

MECHANICAL

Productivity

PROCESS =

Controller

HUMAN MACHINE INTERFA

JIbBiB-2020

YJIK 004.4(075.8) =111 PexomeHnoBaHo 10 IpyKy
BUeHOIO pajoro JIbBiBcbkoro HAY
nporokos NelO Bix 20.05.2020 p.

ABTOpM: K.IL.H., fouieHT Kadenpu iHozeMHux Mo JIHAY H.I'. 'opoaeubka
cT. BUKiIaaa4d kadenpu inozemHux moB JIHAY H.B. I'appuiukis

Penensenru:

Cemko H.M. — kaanuaat Giog0riyHAX HAYK, TOIEHT Kadenpu MEHEHKMEHTY Ta
coliaibHO-TYMaHiTapHuX auctuiuiid JIbBiBchkoro incturyty JABH3 «YHiBepcuTeT
OAaHKIBCHKOI CIIPaBH».

Hepnak O.B. - kanauaar GuIONOriYHUX HAYK, AOLEHT Kadeapu ryMaHiTapHOi OCBITH
JIBBIBCHKOI'O HaIlIOHAIBHOT'O arpapHOro YHIBEPCUTETY.

I'oponenpka H.I'., M'aBpumikis H.b. HaBuanbHMi1 TOCIOHUK 3 aHTITIMCEKOT MOBH JIJISI CTYJICHTIB

HampsMy MHIATOTOBKH «ABTOMAaTH3allisl Ta KOMIT IOTEPHO-IHTETpOBaHI TeXHOJIOri». JIbBIB:
JIHAY, 2020.165c.

HapyanpHuii mociOHMK 3 aHMNHCBKOI MOBHM JUIS CTYAEHTIB HAIMPSMKY ITiATOTOBKH
«ABTOMAaTH3allisl Ta KOMIT IOTEPHO-IHTETPOBaHI TEXHOJIOT1(» MICTUTh TEKCTHU (PaxoBOro

3MICTy. 3aBJaHHS CHOPSIMOBaHI Ha 3aCBOEHHS JIEKCMYHOI'O Marepiaiy 3a paxoM, pO3yMIHHS
1HGOpMaIIii 3 aHTJIOMOBHUX JIKEPEIT, a TAKOXK PO3BUTOK MOBJICHHEBHX HABUYOK.

© H.I'. T'oponenrwka, H.b. I'aBpumkin
© JIbBIBCHKUIA HalllOHATIBHUM arpapHUil YHIBEPCUTET

3MICT

| 02052 20 1Y (0) 2N 4
UNIT 1. SOFTWARE CONSTRUCTIONottiiiiiiiiieei e 5
UNIT 2. BASICS OF SOFTWARE MODELLING ..., 21
UNIT 3. HARDWAREot a e e e e s e naaeees 40
UNIT 4. OPERATING SYSTEMS ..., 57
UNIT 5. SOFTWARE ARCHITECTURE. ...ttt 72
UNIT 6. SOFTWARE DESIGNooiiiiiiiiii et 90
VOCABULARY ettt et e e e e e e s s e e b bbb a e e e e e e e s e e e e aaaerreees 106
LITERATURE ..o 172

IIEPEAMOBA

3anpornoHoBaHW HABYAJIbHUN MOCIOHUK MPHU3HAYECHUN M CTYACHTIB HANpPSIMKY
MIATOTOBKH «ABTOMAaTH3allisi Ta KOMII IOTEPHO-IHTErpOBaHI TeXHOJIOrii». Mera HbOro
nociOHuka — (GOopMyBaHHS Yy CTYJICHTIB HAaBHYOK Ta BMiHb 3 PI3HUX BHJIB YWUTaHHSI
OpUTiHAJIBHOI ()axoBOi JITEpaTypH, ONaHyBaHHs (PaxoBOIO JIEKCUKOIO, BMIHHS BECTU Oeciy
3a (paxoMm, pO3BUTOK HABUYOK AHOTYBAHHS.

IToc10HMK CKJIaJA€THCS 13 MIECTU PO3JUIIB, KOKHUN 3 SKUX MICTUTh OCHOBHHUU TEKCT
JUIS. JIeTaJbHOTO OIpAaIfOBaHHS, a TaKOX JOJATKOBI TEKCTH I CaMOCTIMHOI poOoTH
CTYJICHTIB Ta MEPEBIPKU BMIHb 1 HABUYOK POOOTH 3 TeKCTaMu. J[0 TEKCTIB OAAETHCA Psif
BIIpaB Ha O3HAMOMJICHHSI Ta CEMAHTH3AIIII0 JIEKCUYHUX OJMHUIb; BUKOPUCTAHHS JIGKCUUYHUX
OJIMHUIIb Y CIIOBOCIIONYUYEHHSIX/PEUCHHSX; 3aMiHY/BCTaBKY JIEKCUIHUX OJMHUII; YKIaIaHHS
CUHOHIMIYHMX/aHTOHIMIYHUX PSAJIB; CIIBBITHECEHHS CjoBa 3 ne(DiHIIIEIO; TepeKian;
CKJIaJJaHHs TUTaHb JI0 TEKCTY; BIAMOBII HA 3alIUTaHHS PI3HUX THUIMIB; JOTIOBHEHHS PEUCHHS,
BIIPaBU Ha PO3MI3HABaHHSA 1 AUQPEPEHLIAIII0 HOBUX IpaMaTUYHHUX CTPYKTYp; Ha 3MIHY
rpaMaTuyHOl (POPMHU.

OKkpiM TOro, HaBYAJIbHUI MOCIOHUK MICTUTh CIIOBHUK-MIHIMYM TEPMIiHIB 3a (axom.

UNIT 1. SOFTWARE CONSTRUCTION

Integration
Testing

Translate and study the basic vocabulary.

Corrective 2
Maintenance

coding

configuration item

content

control structure

debugging

formatting

hardware

integration testing

low(high)-level design

named constant

routine

software

software configuration

software construction

software design

software engineering

software life cycle

software project

software system

source file

statement

test case
unit testing
variable
verification
verify

Exercise 1. Choose verbs among the following words. Read and translate the word.
Vary, particular, involve, routine, enter, boundary, refer subsystem, facilitate, separately, tell,
instruct, success, operate, meaningful, navigate, integrate, few, create, significant, access,
specific.

Exercise 2. Give synonyms (a) and antonyms (b) for the following words:

a) refer (to), detailed, combination, meaningful, link, involve, vary, component, need,
integrate, specific, verify, proceed, create, select, polish, carefully, tune, manage, strongly,
typical;

b) meaningful, integration, strongly, output, carefully, separately,
fast, few, closely.

Exercise 3. Write derivatives of the words below and explain their meanings.
Model: construct — construction — constructor — constructive — constructively
Construct, mean, combine, verify, integrate, act, strong, system, separate,
success, add, select, care, close, detail, create, engine.

Exercise 4. Give Ukrainian equivalents for the following word combinations.

The term software construction refers to; the detailed creation of working, meaningful
software; a combination of coding, verification, unit testing, integration testing, and
debugging; software engineering; detailed boundaries between design, construction, and
testing; to depend upon the software life cycle processes; the integration of separately
constructed routines; to lay the groundwork; to proceed successfully; to create the named
constants; to select control structures; to organize blocks of statements; to integrate software
components; to make the code faster and use fewer resources; to produce such configuration
items as source files, content and test cases; software configuration management.

Text 1. Software Construction Activities
The term software construction refers to the detailed creation of working, meaningful software
through a combination of coding, verification, unit testing, integration testing, and debugging.

6

The software construction is linked to all the other software engineering activities, most
strongly to software design and software testing. This is because the software construction
process itself involves significant software design and test activity. It also uses the output of
design and provides one of the inputs to testing. Detailed coundaries between design,
construction, and testing (if any) will vary depending upon the software life cycle processes
that are used in a project. One of the key activities during construction is the integration of
separately constructed routines, classes, components, and subsystems. In addition, a particular
software system may need to be integrated with other software or hardware systems. The
following specific tasks are involved in software construction:

— verifying that the groundwork has been laid so that construction

can proceed successfully;

— determining how your code will be tested;

— determining and writing classes and routines;

— creating and naming variables and named constants;

— selecting control structures and organizing blocks of statements;

— unit testing, integration testing, and debugging your own code;

— reviewing other team members’ low-level designs and code and

having them review yours;

— polishing the code by carefully formatting and commenting it;

— integrating the software components that were created separately;

— tuning the code to make it faster and use fewer resources.

Software construction typically produces configuration items that need to be managed in a
software project (source files, content, test cases, and so on). Thus, the software construction
is also closely linked to the oftware configuration management.

Exercise 5. Find in the text the English for:

KOHCTPYIOBaHHS TPOTPaMHOT0 3a0€3MEeUCHHS; ACTaIbHE CTBOPEHHS POOOYOro, 3MICTOBHOTO
MIPOrPaMHOro 3a0e3MeUeHHs; MOETHAHHS KOMYBaHHSI, TIEPEBIPKH, TECTYBaHHSI KOMIIOHECHTIB
CUCTEMHU, TECTYBAHHS B3a€MO/111 KOMIIOHEHTIB CUCTEMH Ta HAJIArOJKEHHS; OyTH MOB’ I3aHUM
3 pO3pOOJICHHSIM MPOrPAaMHOTO 3a0€3MEUCHHS;, MPOSKTYBAHHS Ta TECTYBAHHS MPOTPAMHOTO
3a0€3MEeUeHHS; YiTKI MEXI; 3aJIe)KaTh BiJ TPOIECIB >KUTTEBOTO IHMKIY MPOTPAMHOTO
3a0€3IeUeHHs; MOEJHAHHS MIANpPOrpaM, KJIaciB, KOMIIOHEHTIB Ta MIiJACUCTEM; 3aKJIacTh
OCHOBY; BiIOyBaTHCS YCIIIIITHO, CTBOPEHHS IMEHOBAaHUX KOHCTAHT, BHUOIp KEpIBHUX
KOHCTPYKIIif; CTBOpEHHsI OJIOKIB OmepaTopiB; HaJaro/DKCHHs KOy, TepeBipka
HU3BKOPIBHEBUX TMPOTPAMHHUX CTPYKTYP Ta KOAY; BIApPEryatoBaTH KOJ Tak, mobO BiH OyB
MIBUAIIMA Ta BHUKOPUCTOBYBAB MEHILE PECYpPCIB;, KEpPyBaTH TaKUMHU eJIeMEHTaMu

KOHQiryparii, Sk BuxigHi Qaiinu, 3MIicT Ta HA0OpUM TECTOBHX JIaHUX; KEpyBaHHS
KOH(]ITypali€r mporpaMHOro 3a0e3neyeHHsl.

Exercise 6. Say whether the statements below are true or false. Correct the false ones.
1. The term software construction refers to the detailed creation of working, meaningful
software through a combination of coding, verification, unit testing, integration testing, and
debugging.

2. The software construction process itself involves significant software design and test
activity.

3. The software construction is linked to all the other software engineering activities, most
strongly to software design and software modelling.

4. Detailed boundaries between design, construction, and testing (if any) will vary depending
upon the hardware life cycle processes that are used in a project.

5. The software construction also uses the output of testing and provides one of the inputs to
design.

6. One of the key activities during construction is the integration of separately constructed
routines, classes, components, and subsystems.

7. Besides other things, software construction involves testing control structures and routines.
8. In addition, a particular software system may need to be integrated with other software or
hardware systems.

9. The code can be polished by carefully formatting and commenting it.

10. Software construction typically produces configuration items that need to be managed in
a software project (source files, content, test cases, and so on).

11. The code needs tuning to make it faster and use fewer resources.

12. The software construction is also closely linked to the project management.

Exercise 7. Form all possible word combinations with the words from both columns.
Translate them.

1) to refer to a) successfully

2) to depend on b) tasks

3) to review c) the creation of software

4) to be linked to d) configuration items

5) to create e) software engineering activities
6) to be integrated with f) the software life cycle process
7) to test g) low-level designs

8) to involve h) software or hardware systems
9) to produce 1) named constants

10) to proceed J) the code

8

Exercise 8. Fill in the blanks with prepositions in,(up)on, with, of, to, through, between
where necessary.

1. The term software construction refers ... the detailed creation ... working, meaningful
software ... a combination ... coding, verification, unit testing, integration testing, and
debugging.

2. The software construction is linked ... all the other software engineering activities, most
strongly ... software design and software testing.

3. It also uses the output ... design and provides one ... the inputs ... testing.

4. Detailed boundaries ... design, construction, and testing (if any) will vary depending ... the
software life cycle processes that are used ... a project.

5. ... addition, a particular software system may need to be integrated ... other software or
hardware systems.

6. Some configuration items that need to be managed ... a software project (source files,
content, test cases, and so on).

Exercise 9. Fill in the blanks with proper terms (software engineering, debugging, source
file, routine, verification, coding, software, software construction) to complete the
sentences.

1. is establishment of the correctness of a theory, fact, activity, etc.

2. Is the detailed creation of working, meaningful software through a combination
of coding, verification, unit testing, integration testing, and debugging.

3. Is locating and removing defects in a evice, system, plan, program, etc.

4. Is a set of instructions, called a program, which tells a computer what to do.

5. IS writing texts of programs.

6. Is a part of a program performing a specific function.

7. Is the original form of a program before it is converted into a machine-readable
form.

8. Is a systematic and disciplined approach to developing software which applies
both computer science and engineering principles to the creation, operation and maintenance
of the computer systems.

Exercise 10. Answer the questions on the text.

1. What does the term software construction refer to?

2. What software engineering activities is the software construction linked to?

3. What do the detailed boundaries between design, construction, and testing depend on?

9

4. What is one of the key activities during construction?

5. What may a particular software system need to be integrated with?
6. What specific tasks are involved in construction?

7. How can the code be polished?

8. What is the purpose of code tuning?

9. What does software construction typically produce?

10. What is software construction also closely linked to?

Exercise 11. Put all possible questions to the sentences below.

1. The term software construction refers to the detailed creation of working, meaningful
software.

2. The software construction is linked to all the other software engineering activities.

3. The software construction process itself involves significant software design and test
activity.

4. Detailed boundaries between design, construction, and testing depend upon the software
life cycle processes.

5. Software construction typically produces configuration items that need to be managed in a
software

project.

6. The software construction is also closely linked to the software configuration management.

Exercise 12. Translate into English.

1. TepMiH «KOHCTPYIOBaHHS MPOTPAMHOTO 3a0€3MEUYCHHSI» O3HAYAE JCTAIBHE CTBOPCHHS
po0oYOro, 3MICTOBHOTO MPOTPAMHOI0 3a0€3MEUeHHs] IUIIXOM TO€JHAHHS KOJIYBaHHS,
MEePEBIPKU, TECTYBAHHSI KOMIIOHEHTIB CUCTEMU, TECTYBaHHS B3a€EMO/111 KOMITOHEHTIB CUCTEMHU
Ta HaJIaroJKCHHS ii poOOTH.

2. KoHcTpyroBaHHS TPOrpaMHOro 3a0e3MedeHHs OB’ sI3aHe 3 yciMa 1HITUMHU BUAaMU POOOTH
3 PoO3po0JeHHS TporpaMHOro 3abe3nmedeHHs, HaHOUIbIe 3 HOro IPOSKTYBAaHHSIM Ta
TECTYBaHHSIM.

3. CaMm mporec KOHCTPYIOBaHHSI IPOrpaMHOro 3abe3neueHHs nepeadadae 6arato podoTH 3
MIPOEKTYBAHHS Ta TECTYBaHHS.

4. Takox y mpolieci KOHCTPYIOBaHHS MPOrPaMHOro 3a0e3MeUeHHs] BUKOPUCTOBYIOTh BUX1IH1
JlaH1 IPOCKTYBAHHS, sIKI 3a0€3MEUYI0OTh OJIMH 3 BXIJTHUX MapaMeTPiB TeCTYBaHHS.

5. HiTKi1 MeX1 MK po3p0OJIeHHSIM, KOHCTPYIOBAHHSIM Ta TECTYBaHHSIM 3aJIeXKaTh BiJl IPOIIECIB
YKUTTEBOTO ITUKJTY MMPOTPAMHOTO 3a0€3MEeUeHHS, IIT0 BUKOPUCTOBYIOTHCS B TIPOEKTI.

6. OgHuM 3 KIIOYOBUX TPOIECIB KOHCTPYIOBAHHS € TIOE€HAHHS OKPEMO CTBOPEHHUX
MiAIpOrpam, KjiaciB, KOMIOHEHTIB Ta MiJACUCTEM.

10

7. KpiM 1poro, okpemi CHCTEMH MPOrPaMHOr0o 3a0e3MEUYeHHS MOXYTh NOTpeOyBaTu
MO€IHAHHA 3 THIIMMH MPOTPAMHUMHM YW anlapaTHUMHU CUCTEMaMHu.

8. CnoyaTky HEOOX1THO EPEBIPUTH, YU 3aKJIa/I€HI OCHOBU JJI YCHIITHOTO KOHCTPYIOBaHHS.
9. IloTim cmixg BU3HAYUTH cHoci® TeCTyBaHHS KOy, HAMCATH KJIacu Ta MANPOTrpaMu,
CTBOPUTH Ta HA3BaTH 3MIHHI Ta IMEHOBaHI KOHCTAHTH.

10. ITicas poro moTpiOHO BUOpATH KEPiBHI KOHCTPYKIIIi Ta CTBOPUTH OJIOKK OTEPATOPIB.
11. Bci wieHn koMaHIy TTOBUHHI MIEPEBIPUTH HU3BKOPIBHEBI MPOTrPaMHI CTPYKTYPH Ta KOJ
OJTUH OJTHOTO.

12. Kog mae OyTHM Hanaro[KeHUM, «BIAUUTIPOBAHUI» Ta BIAPEryIbOBAaHUW HJisi WOTO
NPUIIBUAIICHHS Ta BUKOPUCTAHHS MEHINOI KUTBKOCTI PECYpCiB.

13. Ilix yac KOHCTPYIOBaHHS MPOTrPaMHOro 3a0e3MeUeHHs 3a3BUYail CTBOPIOIOTH €J1EMEHTHU
KoH(Dirypariii, o NoTpeOy0Th KEPyBaHHS B IPOTPAMHOMY MPOEKTI.

14. Takumu enemeHTamMu KoH(pIrypaiii € BUXiJH1 (aiiau, 3MICT Ta HAOOPU TECTOBUX JaHUX.
15. Orxe, KOHCTPYIOBaHHS MPOTPaMHOrO 3a0e3MeueHHs TaKoXX TICHO TIOB’si3aHE 3
KEepyBaHHSM KOH(Irypaui€ro mporpaMHux 3aco0i1B.

Exercise 13. Write a summary of the text “Software Construction” using the phrases:
The text deals with the problem of ...
..is devoted to ...
..describes ...
..focuses on ...
..gives detailed information on ...
...Informs the readers of ...
The key note of the text is ...

Text 2. Software Development
Developing computer software can be a complicated process, and in the last 25 years
researchers have identified numerous distinct activities that go into software development.
They include:
- problem definition;
- requirement development;
- construction planning;
- software architecture or high-level design;
- detailed design;
- coding and debugging;
- unit testing;
- integration testing;

11

- integration;

- system testing;

- corrective maintenance.

These activities may be grouped together as “programming” or “creating a software product”.
If you create software on informal projects you deal with the activity the researchers refer to
as “construction”. Construction focuses on coding and debugging but also includes detailed
design, unit testing, integration testing, and other activities. Construction s also sometimes
referred to as “coding” or “programming”.

But “coding” isn’t really the best word because it implies the mechanical translation of
preexisting design into a computer language. Construction is not at all mechanical and
involves substantial creativity and

judgement. But what activities are not part of construction? Important nonconstructional
activities include management, requirements development, software architecture, user-
interface design, system testing, and

maintenance. Each of these activities affects the ultimate success of a project as much as
construction — at least the success of any project that calls for more than one or two people
and lasts longer than a few weeks.

Exercise 14. Find in text 2 the English for:

CKJIaJHUK TpOIleC; BU3HA4aTH 0araTo OKPEMHUX TPOIIECIB; BHUIPAIIOBAHHSI BUMOT;
BU3HAUYEHHS 3aBJIaHHS; BHCOKOPIBHEBE IIPOEKTYBAHHS; KOJYBAaHHS Ta HaJlaro/KECHHS;
TECTYBaHHS KOMIIOHCHTIB CHCTEMH Ta TECTYBaHHS B3a€MOJii KOMIIOHEHTIB CHCTEMU;
KOPUTYBaJbHUW CYMPOBiA; MaTH CIOpaBy 3 pPOOOTO0, SKY JOCTIIHUKA Ha3WBaIOTh
KOHCTPYIOBaHHSIM; MOTPeOyBaTH 3HAYHOI KPEATHBHOCTI Ta PO3CY/UITMBOCTI; MPOEKTYBAHHS
1HTepdeiicy KOpUCTyBaya; KiHIEBUUA YCMIX MPOEKTY; Mependadyatd ydyacTb OUIbII SIK JABOX
J0J1eH, MPOAOBKYBATUCS OB SIK KUIbKA THKHIB.

Exercise 15. Answer the questions on text 2.

1. What activities does software development include?

2. What may these activities be named as?

3. What does software construction focus on?

4. What is construction sometimes referred to as?

5. Is construction just a mechanical process?

6. What activities are not a part of construction?

7. How do these activities affect the ultimate success of a project?

12

Exercise 16. Use the proper tense form of the verbs in brackets. (Present, Past or Future
Indefinite).

1. Software (be) just instructions which (tell) the computer what to do.

2. The IBM 360 (be) the first commercially successful computer family.

3. The Internet (be) the biggest network in the world.

4. Computer professionals (decide) which hardware, software, and networks endure.

5. The PC (start) a revolution which affects nearly everything we do today.

6. Some common operating systems still in use (be) Windows 2000, Windows XP and
Windows Vista.

7. Most software (change) over time and the anticipation of change (drive) many aspects of
software construction.

8. Our former network administrator (relate) with routing technology such as Cisco.

9. Distance learning and videoconferencing (be) concepts made possible with the use of an
electronic classroom.

10. As computers (evolve) throughout the late 20th century, they (become) more interactive.
11. The objective functions (depend) on the perspective of the model’s user.

12. The international company (store) their customer information in a central database in
Brussels.

13. Today, computers in security systems (result) in safer environments.

14. Our homes and even objects on the street probably (interact) with our smartphones
seamlessly.

15. Computer languages that (require) an interpreter often (run) slower than languages that
(require) a compiler.

16. The system administrator (need) to upgrade the machine hardware.

17. The iPhone (have) all the features of a PDA, mobile phone, and an MP3 player in one
package.

18. The evolution of nanocomputer technology (enable) us to build microscopic machines.
19. Operating system software (run) on laptop computers, cell phones and other so-called
embedded devices.

20. During next ten years the size and shape of the computer (become) a major design issue.
21. Steve Jobs (be) famous for making high quality computers.

22. Computers can (help) people work more creatively.

23. The continued success of mainframes likely (depend) on the functionality.

24. Programs written in Java can (run) on many different computer architectures and operating
systems.

25. The popularity of computer networks sharply (increase) with the creation of the World
Wide Web (WWW) in the 1990s.

13

26. The Internet’s technical changes (have) an increasing effect on our social and political
structures.

27. The early versions of Microsoft Windows (not provide) any computer networking support.
28. With small computing devices people (be) able to spend more time doing what they often
do best.

29. The specialist (use) Bluetooth technology to create a personal area network (PAN).

30. Without innovations in the areas of microprocessor and software reliability future systems
(face) continuous failure.

Exercise 17. Choose the right form of the verbs in brackets and translate the sentences.
Mind the sequence of tenses.

1. The IT support technician asked the end user how often he (update/is updating/updated) his
device drivers.

2. The programmers know that PC servers (cost/will cost/costs) in the range of a few thousand
dollars.

3. Analysts predict that our homes, cars and even objects on the street (interact/interacts/will
interact) with our smart phones and with each other.

4. Teachers say that educational interaction (includes/was inl15 cluded/will include) many
factors, among them are students, curriculum, parents, teachers, administrators and more.

5. The woman said she always (is searching/searches/searched) for freeware versions of an
application before buying one.

6. I’'m sure the company (releases, will release, released) a new software next year.

7. The IT manager said the new information about architect’s project (was/were/will be)
unacceptable.

8. We know that online applications and services (will transform/are transforming/transform)
the consumer technology market.

9. The student asked his professor if the course books (was/were/are being) available as
hypertext.

10. I suppose that the specialist (is knowing, knew, knows) several foreign languages.

Exercise 18. Change the sentences into indirect speech.

1. The lecturer told his students, “Microsoft Windows has a significant majority of market
share in the notebook computer markets.”

2. The professor warned our group, “Don’t forget to review the material of the previous lecture
on software engineering’.

3. “You have computer problems that involve your operating system or an application”, the
IT specialist said to his client.

14

4. “Did you study any programming computer codes yesterday?”” he asked his groupmates.
5. “Our analysts didn’t establish computer security programs to prevent attacks”, she
complained.

6. My friend told me, “Tablets will take over from smartphones as the technology of choice
for shopping”.

7. “Last week we developed specialized databases for company needs,” replied the
programmer.

8. “What Internet provider will you choose?” asked him his colleague.

9. “Our technicians will help users deal with hardware and software problems”, explained the
support engineer.

10. I asked the networking specialist, “What kind of networks do you maintain?”

Exercise 19. Use Present or Future Simple of the verbs in brackets. Mind that in
subordinate clauses of time and condition, Present Simple is used instead of Future
Simple. Such clauses begin with conjunctions: if, when, while, since, before, after, unless.
1. After I (finish) school, I (enter) the University.

2. Since nobody (like) to wait for a computer, high-quality computers (have) fast processors
and lots of quick memory.

3. Before she (get) to the theatre, she (go) past the computer centre.

4. If you (not have) previous experience, good contacts, or a good degree from a well-known
university, you (be) more successful in getting a lower-level job.

5. If students (keep) learning something new every day, they eventually (be) competent
enough to get a high-skill job.

6. Hundreds of books (come) in the future as technologies (mature) and (evolve).

7. If you (work) on networks for a living and you (be) a network engineer, you probably (take)
certification exams by networking companies such as Cisco.

8. Unless nanotechnology or some other technology actually (become) operational, this trend
(end) according

to some predictions around 2022.

9. While both mainframe and other platforms (evolve), there (be) some cost advantages to
retaining the old technology.

10. When software (have) a bug the program (crash) and (terminate) with a confusing
message.

15

Text 3. Software Construction Fundamentals
The fundamentals of software construction include:
» Minimizing complexity
» Anticipating change
» Constructing for verification
» Standards in construction

The first three concepts apply to design as well as to construction. We will define these
concepts and describe how they apply to construction.
Minimizing Complexity
A major factor in how people convey intent to computers is the severely limited ability of
people to hold complex structures and information in their working memories, especially over
long periods of time. This leads to one of the strongest drivers in software construction:
minimizing complexity. The need to reduce complexity applies to essentially every aspect of
software construction, and is particularly critical to the process of verification and testing of
software construction. In software construction, reduced complexity is achieved through
emphasizing the creation of the code that is simple and readable ratherthan clever.
Anticipating Change
Most software will change over time, and the anticipation of change drives many aspects of
software construction. Software is unavoidably part of changing external environments, and
changes in those outside
environments affect software in diverse ways. Anticipating change is supported by many
specific techniques:

» Communication methods (for example, standards for document formats and contents)

» Programming languages (for example, language standards for languages like Java and

C++)
» Platforms (for example, programmer interface standards for operating system calls)
» Tools (for example, diagrammatic standards for notations like UML (Unified
Modelling Language))

Constructing for Verification

Constructing for verification means building software in such a way that faults can be ferreted
out readily by the software engineers writing the software, as well as during independent
testing and operational activities.

Specific techniques that support constructing for verification include coding standards to
support code reviews, unit testing, organizing code to support automated testing, and
restricted use of complex or

hard-to-understand language structures.
16

Standards in Construction

Standards that directly affect construction issues include the use of external standards.
Construction depends on the use of external standards for construction languages,
construction tools, technical interfaces, and interaction between software construction and
other software engineering. Standards come from numerous sources, including hardware and
software interface specifications such as the Object Management Group (OMG) and
international organizations such as the 1SO.

The Use of Internal Standards

Standards may also be created on an organizational basis at the corporate level or for use on
specific projects. These standards support coordination of group activities, minimizing
complexity, anticipating change, and constructing for verification.

Exercise 20. Answer the questions on the text 3.

1. What do the fundamentals of software construction include?
2. What does the need to reduce complexity apply to?

3. What is reduced complexity achieved through?

4. What specific techniques is anticipating change supported by?
5. What does constructing for verification mean?

6. What do specific techniques that support constructing for verification
include?

7. What does construction depend on?

8. What do standards in construction come from?

9. May standards also be created on an organizational basis?

Exercise 21. Make up questions to the italicized parts of the sentences.

1. The first three concepts apply to design as well as to construction.

2. This leads to one of the strongest drivers in software construction.

3. Reduced complexity is achieved through emphasizing the creation of code.

4. Most software will change over time.

5. Anticipating change is supported by many specific techniques.

6. Standards that directly affect construction issues include the use of external standards.
7. Construction depends on the use of external standards.

8. Standards come from numerous sources.

9. These standards support coordination of group activities, minimizing complexity,
anticipating change, and constructing for verification.

Exercise 22. Give nouns corresponding to the following verbs. Translate them.

17

Construct, verify, apply, define, reduce, achieve, create, anticipate, communicate, program,
operate, automate, restrict, direct, manage, interact, organize, specify, coordinate, act.

Exercise 23. Translate the word combinations below into Ukrainian.

Waterfall and staged-delivery life cycle models; to treat construction as an activity; significant
prerequisite work has been completed; extensive design work; to emphasize the activities that
precede construction (requirements and design); to create more distinct separations between
the activities; to be more iterative, such as evolutionary prototyping and extreme
programming; to occur concurrently with other software development activities; the
approaches, which tend to mix design, coding,

and testing activities; the choice of construction method; to affect the extent to which
construction prerequisites are performed; to affect the project’s ability to reduce complexity,
anticipate change, and construct for verification; to be addressed at the process, requirements,
and design levels; to be influenced by the choice of construction method; to define the order
in which components are created and integrated; the software quality management processes;
the allocation of task assignments to specific software engineers.

Text 4. Construction Models and Construction Planning

Numerous models have been created to develop software, some of which emphasize
construction more than others. Some models are more linear from the construction point of
view, such as the waterfall and staged-delivery life cycle models. These models treat
construction as an activity which occurs only after significant prerequisite work has been
completed — including detailed requirements work, extensive design work, and detailed
planning. The more linear approaches tend to emphasize the activities that precede
construction (requirements and design), and tend to create more distinct separations between
the activities. In these models, the main emphasis of construction may be coding. Other
models are more iterative, such as evolutionary prototyping and extreme programming. These
approaches tend to treat construction as an activity that occurs concurrently with other
software development activities, including requirements, design, and planning, or overlaps
them. These approaches tend to mix design, coding, and testing activities, and they often treat
the combination of activities as construction. Consequently, what is considered to be
“construction” depends to some degree on the life cycle model used.

The choice of construction method is a key aspect of the construction planning activity. The
choice of construction method affects the extent to which construction prerequisites are
performed, the order in which they are performed, and the degree to which they are expected
to be completed before construction work begins. The approach to construction affects the
project’s ability to reduce complexity, anticipate change, and construct for verification. Each

18

of these objectives may also be addressed at the process, requirements, and design levels —
but they will also be influenced by the choice of construction method. Construction planning
also defines the order in which components are created and integrated, the software quality
management processes, the allocation of task assignments to specific software engineers, and
the

other tasks, according to the chosen method.

Exercise 24. Find in text 4 the English for:

YHUCIIEHHI MOJIEIN; pO3pO0JIsATH MporpaMHe 3a0e3MeUeHHs; HalaBaTH 0COOJIMBOTO 3HAYCHHS
KOHCTPYIOBAaHHIO; BOJOCHaJHI Ta KacKaJHI MOJEIl >KUTTEBOTO LUKy, PO3TIsSIaTh
KOHCTPYIOBaHHS SIK TIPOIIEC; BAXJIMBA MOMEPEIHS PoOO0Ta; JIHIWHUN MIAXIJ; omepariii, mo
NepelyloTh KOHCTPYIOBAaHHIO; YITKE PO3MEXKYBaHHS; €BOJIOIIAHE MOJIEIIOBAHHS;
EKCTpEMaJlbHE TMpOTrpaMyBaHHS; IMOEAHYBAaTH BHMOTH, MPOCKTYBaHHS Ta IUIAaHYBAaHHS;
BIUTMBATH Ha PIBEHb BUKOHAHHS MEPEAYMOB KOHCTPYIOBAHHS; MiAXIJ A0 KOHCTPYIOBAHHS;
BHUOIp METOAY KOHCTPYIOBAHHS; TOPSJIOK CTBOPCHHS Ta MOETHAHHS KOMITOHEHTIB; TPOIIEC
KEpyBaHHS SKICTIO TIPOrPAMHOT0 3a0€3IIEUCHHS; PO3IIO/I1IT 3aB/IaHb.

Exercise 25. Make five key questions to the text “Construction Models and Construction
Planning”.

Text 5. Construction Measurement and Design

Numerous construction activities and artifacts can be measured, including code development,
code modification, code reuse, code destruction, code complexity, code inspection statistics,
fault-fix and fault-find rates, effort, and scheduling. These measurements can be useful for
purposes of managing construction, ensuring quality during construction, improving the
construction process, as well as for other reasons.

Construction is an activity in which the software has to come to terms with arbitrary and
chaotic real-world constraints. Due to its proximity to these constraints, construction is more
driven by practical considerations and software engineering is perhaps most craft-like in the
construction area. Some projects allocate more design activity to construction; others to a
phase explicitly focused on design. Regardless of the exact allocation, some detailed design
work will occur at the construction level, and that design work tends to be dictated by
immovable constraints imposed by the real-world problem that is being addressed by the
software. Just as construction workers building a physical structure must make smallscale
modifications to account for unanticipated gaps in the builder’s plans, software construction
workers must make modifications on a smaller or larger scale to flesh out details of the
software design during construction.

19

Exercise 26. Find in text 5 the English for:

OLIIHIOBAaTU YHCJIEHHI MPOILIECH Ta apTe(paKkTh KOHCTPYIOBAHHS; BKJIIOYATH PO3POOJICHHS,
MoaU(]IKallilo, MOBTOPHE BUKOPHUCTAHHS, PYWHYBaHHS Ta CKJIQJHICTb KOAY; BKJIIOYATH
CTaTUCTUKY TEPerjsiay KOay, KOe(illleHT BU3HAYCHHS Ta 3HAXOHKCHHS MOMUMIIKH, 0OCST
poOIT Ta TUTaHYBaHHS; 3 METOI KEpPyBaHHS KOHCTPYIOBAaHHSAM, 3a0€3MEUCHHS SIKOCTI B
mpoleci KOHCTPYIOBAaHHS Ta BJIOCKOHAJEHHS KOHCTPYIOBaHHS; MPHUCTOCOBYBATHUCS JI0
JOBUTLHUX Ta XAOTHYHMX OOMEKEHb PEaJbHOI'0 CBITY; Yepe3 MOAIOHICTh J10 OOMEXEHb
pPEaIbHOTO CBITY; PO3pOOJIEHHS MPOrPaMHOro 3a0€3MeUeHHs; OyTH HAOUIBIIT MAaHCTEPHUM Y
KOHCTPYIOBaHHI; HE 3BEPTAIOYM yBarW Ha YITKUHA PO3MOALT POOOTH; BiOyBaTUCS Ha PiBHI
KOHCTPYIOBAHHS;, 3YMOBJIFOBATHUCS HE3MIHHMMH OOMEKCHHSIMH 3aBJaHb PEANbHOTO CBITY;
BHOCUTH HE3HA4YHI 3MIHM; KOHKPETHU3YBaTH JeTali pPO3POOJEHHS MPOTPAMHOTO
3a0e3MeueHHH.

Exercise 27. Write derivatives of the verbs below and explain their meanings.
Measure, develop, use, modify, destruct, act, improve, consider, move, anticipate, allocate,
require, restrict, specify, design.

Exercise 28. Find in the text words that can function both as nouns and verbs. Translate
them.
Model: work — 1) npans 2) nparmroBatu

Exercise 29. Answer the questions on text 5.

1. What construction activities and artifacts can be measured?

2. What can these measurements be useful for?

3. What constraints does the software have to come to terms with?
4. What is construction driven by?

5. Why must software construction workers make modifications on a smaller or larger scale
design?

Exercise 30. Find some additional information and speak on:
1. Software design.

2. Software testing.

3. Coding and debugging.

20

UNIT 2. BASICS OF SOFTWARE MODELLING

Computers Software Models
everywhere everywhere J| everywhere?

Translate and study the basic vocabulary.
behavioural perspective

data architecture

dependent quantity

diagram

external perspective

fix a bug

legacy system

object-oriented design

process model

software model

software modelling

structural perspective

Unified Modelling Language (UML)

Exercise 1. Choose nouns among the following words. Read and translate the word.

Permeate, however, modification, responsible, fortunately, object, inherently, conjure up,
diagram, dependent, environment, unlike, probably, language, unwieldy, legacy, identify,
inherently, interface, briefly, network, evaluate, whenever, generation.

Exercise 2. Give synonyms (a) and antonyms (b) for the following words:

a) diagram, apply to, bug, architecture, create, permeate, implement, allow, support, feature,
cause, perspective, environment, activity, wallsized, unwieldy, identical, unique, uniform,
quickly, fortunately, briefly, probably, apply;

b) dependent, destruction, out of date, internal, unwieldy, unique, responsible, quickly,
fortunately, unlike.

21

Exercise 3. Write derivatives of the words below and explain their meanings.

Model: create — creation — creator — creativity — creature — creative

Create, internal, fortune, simple, dependence, identify, violate, probable, brief, responsible,
change, behaviour, differ, develop, architect, structure, apply, quick, cause, active.

Exercise 4. Give Ukrainian equivalents for the following word combinations.

To conjure up images of wall-sized UML diagrams; diagrams are usually out of date by the
time they are printed; large-scale and often unwieldy methods; to be not the only kind
available for modelling software; to start from scratch; to permeate the entire system; to apply
to all software models; ownership, dependency, interface and identity; to apply to legacy
systems as well as to new projects; to think back to the last serious bug that you fixed; to
identify a violation of one of these rules as the cause; responsible for creation and destruction;
to be not transferable; to be up to date whenever referenced; to implement some set of
interfaces; to inherently identify an object; to access an identical object; to expect uniform
behaviour; communication among stakeholders; to present the system from different
perspectives; to show the system’s context or environment; to show the system development
process as well as activities supported by the system.

Text 1. Basics of Software Modelling

Modelling is simply the practice of creating a small system that has some of the same features
of a larger system. When applied to software, the word modelling usually conjures up images
of wall-sized UML diagrams. Internal software, however, changes so quickly that such
diagrams are usually out of date by the time they are printed. Fortunately, such large-scale
and unwieldy methods are not the only kind available for modelling software. A software
model does not have to start from scratch. It does not have to permeate the entire system. The
only thing that a software

model needs is a set of rules. The same four rules apply to all software models.

The four rules of software modelling are:

1) ownership

2) dependency

3) interface

4) identity

Unlike the rules of object-oriented design, these four apply to legacy systems as well as to
new projects. Think back to the last serious bug that you fixed. You can probably identify a

22

violation of these rules as the cause. Briefly, ownership means that every object has exactly
one owner responsible for its creation and destruction, and that ownership is not transferable.
Dependency means that any bit of data used to evaluate a dependent quantity is a precedent,
and that dependents must be up to date whenever referenced. Interface means that every object
implements some set of interfaces, and that these interfaces allow objects to be interchanged.
Identity means that all objects have unique identity, that aninterface inherently identifies an
object, and that all clients accessing an identical object can expect uniform behaviour.
Software modelling helps the engineer to understand the functionality of the system. Models
are used for communication among stakeholders. Different models present the system from
different perspectives:

» external perspective showing the system’s context or environment;

» process models showing the system development process as well

as activities supported by the system;

> behavioural perspective showing the behaviour of the system;
» structural perspective showing the system or data architecture.

Exercise 5. Find in text 1 the English for:

100 MPOrpaMHOro 3a0e3MEYEHHs; BUKJIMKAaTH B ysBl 300paxkeHHs BenumuesHux UML
JiarpaM; 3acTapuinii; BEIMKOMACIITaOHI Ta TPOMI3AKI METOAM; PO3MOYMHATHCS 3 HYIIS;
MIPOXOJIUTH Yepe3 BCIO CUCTEMY; HAO1p MpaBuIl; MPABO BIACHOCTI, 3aJIEKHICTb, B3A€EMO3B’SI30K
Ta 1ACHTUYHICTb, HA BIAMIHY BiJ TMpaBUiI 00’ €KTHO-OPIEHTOBAHOI'O MPOCKTYBaHHS;
3aCTOCOBYBATHUCS JI0 YCMAJIKOBAaHUX CUCTEM TaK Camo, sIK 1 10 HOBUX MPOEKTIB; BUMIPABISATH
CepiO3Hy MOMMWIKY; MOPYIICHHsS MpaBUJ; CTBOPEHHS Ta 3HMILEHHS; MPaBO BIIACHOCTI HE
NEepENaEThCsl; BU3HAYATH 3aJIe)KHY BEIMYMHY; OyTH HaWHOBIIIMMH 10pa3y, KOJU 0 HUX
3BEPTAIOThCS; 3a0€3MeuyBaTH MEBHY CYKYIHICTh 1HTEp(EiCiB; T03BOIATH NEPECTABISTH
00’€KTH; MaTH JIOCTYII JO 1IGHTHYHOTO O0’€KTY; OYIKYBaTH OJHAKOBOI MOBEMIHKH; OOMIH
iHpOpMaIllEl0 MK YYaCHUKAaMM; MPE3EHTYBATH CUCTEMY 3 PI3HMX PaKypciB; MOBEIIHKA
CUCTEMU.

Exercise 6. Say whether the statements below are true or false. Correct the false ones.
1. When applied to software, the word modelling usually conjures up images of matchbox-
sized circuit diagrams.

2. Modelling is simply the practice of creating a large system that has some of the same
features of a smaller system.

3. Unfortunately, large-scale and unwieldy methods are the only kind available for modelling
software.

23

4. Internal software does not change quickly and diagrams are usually up to date by the time
they are printed.

5. A software model has to permeate the entire system.

6. A software model does not have to start from scratch.

7. The four rules of software modelling are: significance, availability, simplicity and
minimization.

8. Unlike the rules of object-oriented design, these four do not apply to legacy systems as they
do to new projects.

9. Dependency means that any bit of data used to evaluate a dependent quantity is a precedent,
and that dependents must be up to date whenever referenced.

10. Briefly, ownership means that every object has exactly one owner responsible for its
creation and destruction.

11. Interface means that every object implements some set of interfaces, and that these
interfaces do not allow objects to be complementary to one another.

12. Software modelling helps the engineer to understand the functionality of the system.

13. Identity means that all objects have unique identity, that an interface inherently identifies
an object, and that all clients accessing an identical object can expect uniform behaviour.

14. Different models present the system from different perspectives: external perspective,
system development perspective, behavioural perspective and structural perspective.

Exercise 7. Form all possible word combinations with the words from both columns.
Translate them.

1. to change a) uniform behaviour

2. to be b) the system from different perspectives
3. to start from c) the last serious bug

4. to apply to d) communication among stakeholders
5. to think back to e) legacy systems

6. to evaluate) some set of interfaces

7. to implement g) scratch

8. to expect h) a dependent quantity

9. to be used for 1) quickly

10. to present J) out of date

24

Exercise 8. Fill in the blanks with prepositions to, of, by, from, unlike, with, among, up,
for where necessary.

1. Modelling is simply the practice ... creating a small system that has some ... the same
features ... a larger system.

2. When applied ...software, the word modelling usually conjures ... images ... wall-Sized
UML diagrams.

3. Internal software, however, changes so quickly that such diagrams are usually date
... the time they are printed.

4. A software model does not have to start ... scratch.

5. ... the rules ... object-oriented design, these four apply ... legacy systems as well as ...
new projects.

6. Briefly, ownership means that every object has exactly one owner responsible ... its
creation and destruction.

7. Software modelling helps the engineer to understand the functionality ... the system.
8. Models are used ... communication ... stakeholders.

9. A software model has to permeate ... the entire system.

10. Different models present the system ... different perspectives.

Exercise 9. Fill in the blanks with proper terms (structural perspective, behavioural
perspective, process models, external perspective, modelling, identity, interface,
dependency, ownership) to complete the sentences.

1. means that every object implements some set of interfaces, and that these
interfaces allow objects to be interchanged.

2. Is simply the practice of creating a small system that has some of the same
features of a larger system.

3. shows the system’s context or environment.

4, means that any bit of data used to evaluate a dependent quantity is a precedent,
and that dependents must be up to date whenever referenced. 5. show the system
development process as well as activities supported by the system.

6. means that every object has exactly one owner responsible for its creation and
destruction, and that ownership is not transferable.

7. shows the system or data architecture.

8. shows the behaviour of the system.

25

0. means that all objects have unique identity, that an interface inherently
identifies an object, and that all clients accessing an identical object can expect uniform
behaviour.

Exercise 10. Answer the questions on text 1.
1. What is modelling?
2. What does the word modelling usually conjure up when applied to software?

3. Why are such diagrams usually out of date by the time they are printed? 4. Does a software
model have to start from scratch or permeate the entire system?

5. What four rules apply to all software models?

6. What projects do these four rules apply to?

7. What can violation of these rules lead to?

8. What does ownership mean?

9. What does dependency mean?

10. What does interface mean?

11. What does identity mean?

12. What does software modelling help the engineer in?

13. What perspectives do different models present the system from?
14. What do these perspectives show?

Exercise 11. Put all possible questions to the sentences below.

1. The word modelling usually conjures up images of wall-sized UML diagrams.
2. Internal software changes quickly.

3. Such diagrams are usually out of date by the time they are printed.

4. The only thing that a software model needs is a set of rules.

5. The same four rules apply to all software models.

Exercise 12. Translate into English.

1. MonentoBaHHs — 1€ METOJI CTBOPEHHSI MEHIIIOT CUCTEMH, 1110 Ma€ MEBHI XapaKTEPUCTUKU
OUIBIIO].

2. llomo mporpamMHOro 3a0e3reyeHHs! CIOBO «MOJETIOBAHHS) 3a3BUYall BUKIMKAE B YSBI
300paxkenns UML miarpam po3mipom 3i CTiHY.

3. IIpote BMiCT mporpaMHOro 3a0e3ne4eHHs 3MIHIOEThCS TaK MIBUAKO, IO AlarpaMu 3a3BHYaii
CTalOTh 3aCTAPLIIMMU PAHIIIL, K X PO3JAPYKYIOTb.

26

4. Ha mmacts, juisi MOAETIOBaHHS TPOTPAMHOTO 3a0€3MEYCHHS ICHYIOTH HE JIMIIE TaKi
BEJIMKOMACIITA0H1 Ta TPOMI3/IKI METO/IH.

5. Mogenp mporpamMHoro 3a0e3nedyeHHs HEOOOB A3KOBO Ma€ PO3MOYMHATHCA 3 HYJIS
MIPOXOJIUTH YEPE3 YCIO CUCTEMY.

6. €1uHe, 4oro nmoTpedye MoJIenbh MPOrPaMHOTO 3a0€3MeYeHHs — 1€ Hallp MpaBuIL.

7. Hotnpu mpaBuia MOJCIIOBAHHS IPOTPAaMHOr0 3a0e3MeUYeHHS — II€ MPAaBO BIIACHOCTI,
3aJIEKHICTh, B3a€EMO3B 130K Ta 1IEHTUYHICTD.

8. Ha BigMiHy BiJ IpaBUi 00’ €KTHO-OPIEHTOBAHOI'O IMPOCKTYBAaHHS, Il YOTHUPH IpaBuUia
3aCTOCOBYIOTh JI0 YCHAaJKOBAHUX CHUCTEM TaK camo, K 1 0 HOBUX MpPOEKTiB. 9. 3ragaite
OCTaHHIO CEPUO3HY TOMUWIKY, SIKY BU BUIIPABUIIH.

10. IIpuunHOIO 1ILOTO, KMOBIPHO, MOKHA BBAYKATH MOPYIICHHS I[UX MPABUIL

11. IIpaBo BIacHOCTI O3Ha4ae, MO0 KOKHUK OO0 €KT Mae JIMIIE OAHOTO BJIACHUKA, 1 MPAaBO
BJIACHOCTI HE MEPEAAETHCS.

12. 3anexHicTh O3HauYae, MO0 Oyab-fKa KUIBKICTh JAHUX, SIKI BUKOPHCTOBYIOTHCS MJIs
BHU3HAYEHHS 3aJI€KHOT BEJIMYMHM, € TIONEPETHIM 3HAUYCHHSIM.

13. B3aeM03B’ 130K 03HaYae, 110 KOKHUN 00’ €KT 3a0e3neuye NeBHY CyKYIHICTh iHTEpdeCiB,
K1 J1I03BOJISIFOTh MIEPECTABIIATH 00’ €KTH.

14. [neHTUYHICTH 03HaYaEe, M0 BC1 00’ €KTH MAIOTh YHIKAJIbHY 1ICHTUYHICTD, 1 IHTEep(eiic, 110
IO CYyTi, BUBHAYAE 00 EKT.

15. MogentoBaHHs OpOrpaMHOro 3a0e3NeyeHHs JO0NOMAara€ I1HXEHEpPOBl 3pO3yMITH
(YHKL10HAIBHICTh CUCTEMH.

16. Pi3H1 Moaeni NpeacTaBisiiOTh CUCTEMY 3 PI3HUX aCIEKTIB.
17. 30BHIIIHINA aCLIEKT MOKa3y€e KOHTEKCT 400 OTOUEHHS CUCTEMH.

18. Mogeni mporiecy MOKa3yrTh MPOIEC PO3POOJCHHS CUCTEMH, a TaKOX (PYHKIN, SKi
HiATPUMYE 1151 CUCTEMA.

19. [ToBeiHKOBHIA aCTIEKT MOKA3Y€ MOBEIIHKY CUCTEMH.

20. CTpyKTypHHI aClIEeKT MOKa3ye apXiTEKTypy CUCTEMHU a00 TaHUX.

Exercise 13. Write a summary of the text “Software Modelling”.

Text 2. Mathematical Models
A mathematical model uses mathematical language to describe a system. Mathematical
models are used not only in the natural sciences and engineering disciplines (such as physics,
biology, meteorology, and electrical engineering) but also in the social sciences (such as
economics, psychology, sociology and political science); physicists, engineers, computer

27

scientists, and economists use mathematical models most extensively. Eykhoff (1974) defined
a mathematical model as “a representation of the essential aspects of an existing system (or a
system to be constructed) which presents knowledge of that system in usable form”.
Mathematical models can take many forms, including but not limited to dynamic systems,
static models, differential equations, or game theoretic models. These and other types of
models can overlap, with a given model involving a variety of abstract structures. Often when
engineers analyze a system to be controlled or optimized, they use a mathematical model. In
analysis, engineers can build a descriptive model of the system as a hypothesis of how the
system could work, or try to estimate how an unforeseeable event could affect the system.
Similarly, in control of a system, engineers can try out different control approaches in
simulations. A mathematical model usually describes a system by a set of variables and a set
of equations that establish relationships between the variables. The values of the variables can
be practically anything; real or integer numbers, boolean values or strings, for example. The
variables represent some properties of the system, for example, measured system

outputs often in the form of signals, timing data, counters, and event occurrence (yes/no). The
actual model is the set of functions that describe the relations between the different variables.
There are six basic groups of variables: decision variables, input variables, state variables,
exogenous variables, random variables, and output variables. Since there can be many
variables of each type, the variables are generally represented by vectors. Decision variables
are sometimes known as independent variables. Exogenous variables are sometimes known
as parameters or constants. The variables are not independent of each other as the state
variables are dependent on the decision, input, random, and exogenous Vvariables.
Furthermore, the output variables are dependent on the state of the system (represented by the
state variables). Objectives and constraints of the system and its users can be represented as
functions of the output variables or state variables. The objective functions will depend on the
perspective of the model’s user. Depending on the context, an objective function is also known
as an index of performance, as it is some measure of interest to the user. Although there is no
limit to the number of objective functions and constraints a model can have, using or
optimizing the model becomes more involved (computationally).

Exercise 14. Make up 10 key questions on the text.

Exercise 15. Find in text 2 the English for:

MIPUPOJIHUYI HAYKH Ta TEXHIYHI JUCIUIUIIHU; COIIOJIOTIS Ta IMOJITOJOTIS; METEOpOJIoTis Ta
€JIEKTPOTEXHIKA; HAWOUIbII MIMPOKO BHUKOPUCTOBYBaTM MaTeMaTHU4HI MOJEINI;
MIPE/ICTABICHHS BOXKIIMBUX aCMEKTIB HASBHOT CUCTEMHU; MPE3EHTYBATH 3HAHHS PO CUCTEMY B

NpaKTUYHIN popmi; HAOyBaTh Oaratbox (popM; BKIIFOUHO 3 JUHAMIYHUMHU CUCTEMAaMHU, ajie He
28

00MEXYIOUUCh HUMU, CTATHYHUMHU MOJIEISIMU, TU(epeHIIIITHIMY PIBHIHHIMHI 200 MOJIETSIMU
Teopii irop; MoJieli MOXKYTh HaKJIaJaTUCS OJTHA HA OJIHY; BKJIFOYATH PI3HOMaHITHI aOCTpaKTHI
CTPYKTYpH; OIKCOBAa MOJENb CHUCTEMHU; OL[IHIOBATH, SIK HemependayyBaHa MOJisS MOXe
BIUTUHYTH

Ha CHCTEeMY;, BUIIPOOOBYBAaTH Pi3HI KOHIICMIII KEPyBaHHSI B MOJIEIIOBaHHI, OIKCYBaTH
CUCTEMY CYKYIHICTIO 3MIHHMX Ta CYKYIIHICTIO PIBHSIHb, BCTAHOBJIIOBATH 3B’SI30K MIXK
3MIHHUMU; JIACHI a00 1T 4mcia; OysaeBl BEMMUYUHA ab0 PSIKH; YacOBl XapaKTEPUCTHKH,
miumibH1 (QYHKIIT Ta HACTaHHA MOJIT; 3MIHHI PIIICHHS, BXIJHI 3MIiHHI, 3MiHHI CTaHy,
€K30reHH1 (30BHIIIHI) 3MiHHI, BUMAJIKOBl 3MIHHI Ta BHXIAHI 3MiHHI; Il Ta OOMEXKEHHS
CHUCTEeMH, IUThOBA (DYHKIIIS, BiJloOMa SIK IMOKA3HUK €()EKTHBHOCTI; MOKa3HUK, IO I[IKABUTH
KOpPHUCTYBaua; MO/JIe]I1 BUKOPUCTAHHS Ta ONTUMI3YBaHHS CTAIOTh JeAai CKIaIHIITUMH.

Exercise 16. Translate the word combinations below into Ukrainian.

Linear vs nonlinear; predictor variables, differential equation, objective functions and
constraints; in fairly simple systems; to be often associated with phenomena such as chaos
and irreversibility; a common approach to nonlinear problems; aspects such as irreversibility,
which are strongly tied to nonlinearity; deterministic vs probabilistic (stochastic) model; every
set of variable states; to be uniquely determined by parameters; unique value; probability
distribution; lumped vs distributed parameters; consistent state throughout the entire system;
varying state within the system.

Text 3. Classification of Mathematical Models
Many mathematical models can be classified in the following ways:

Linear vs nonlinear. Mathematical models are usually composed of variables, which are
abstractions of quantities of interest in the described systems, and operators that act on these
variables, which can be algebraic operators, functions, differential operators, etc. If all the
operators in a mathematical model present linearity, the resulting mathematical model is
defined as linear. A model is considered to be nonlinear otherwise.

The question of linearity and nonlinearity is dependent on the context, and linear models may
have nonlinear expressions in them. For example, in a static linear model, it is assumed that a
relationship is linear in the parameters, but it may be nonlinear in the predictor variables.
Similarly, a differential equation is said to be linear if it can be written with linear differential
operators, but it can still have nonlinear expressions in it. In a mathematical programming
model, if the objective functions and constraints are represented entirely by linear equations,
then the model is regarded as a linear one. If one or more of the objective functions or
constraints are represented with a nonlinear equation, then the model is known as a nonlinear

29

one. Nonlinearity, even in fairly simple systems, is often associated with phenomena such as
chaos and irreversibility. Although there are exceptions, nonlinear systems and models tend
to be more difficult to study than linear ones. A common approach to nonlinear problems is
linearization, but this can be problematic if one is trying to study aspects such as
irreversibility, which are strongly tied to nonlinearity.

Deterministic vs probabilistic (stochastic). A deterministic model is one in which every set
of variable states is uniquely determined by parameters in the model and by sets of previous
states of these variables. Therefore, deterministic models perform the same way for a given
set of initial conditions. Conversely, in a stochastic model, randomness is present, and variable
states are not described by unique values, but rather by probability distributions.

Static vs dynamic. A static model does not account for the element of time, while a dynamic
model does. Dynamic models typically are represented with differential equations.

Lumped vs distributed parameters. If the model is homogeneous (consistent state
throughout the entire system) the parameters are distributed. If the model is heterogeneous
(varying state within the system), then the parameters are lumped. Distributed parameters are
typically represented with partial differential equations.

Exercise 17. Find in text 3 the English for:

BEJIMYMHH, 1110 HAC IIKABIIATh; ONEPaTOPH, 10 AIFOTh HA 11l 3MiHHI; OyTH JIIHIHHUM; TUTAHHS
JIHIAHOCTI Ta HENIHIKHOCTI; OYTH 3aJIe)KHUM BiJI KOHTEKCTY; MPHUITYCKaTH, IIIO;
MPOrHOCTHUYHUM MapaMeTp; TudepeHIlitoiHe PIBHAHHS; IUIbOB1 QYHKIIIT Ta 00MeXeHHs; OyTH
MPEICTABICHUM BHUKJIIOYHO JIIHIMHUMHU PIBHSHHSAMM, JIOCUTh MPOCTI CHUCTEMHU; OYyTH
MOB’S3aHUM 3 TAKWMH SBHINAMH, SK XaoC Ta HE3BOPOTHICTh; 3arajbHUN MiAXia;, HaOIp
(CYKyIHICTh) 3MIHHHMX; OJIHO3HAYHO BHU3HAYaTUCS TMapaMeTpaMu; 30CEPeIKEHI Ta
pPO3MOAUIEH] TMapaMeTpu; OJHOPIHA MOJENb; HEOJHOPIHA MOJENb;, CTAaOUILHUN CTaH;
MIHJIUBUN CTaH.

Exercise 18. Translate into English.

1. MarematnuHi MoOAEN CKJIQJAarOThCs 31 3MIHHHUX Ta OMNEPaTOpiB, IO BIUIMBAIOTh Ha Il
3MIHHI.

2. 3MiHHI BEIMYMHU € a0CTpakUIsIMH BEJIWYMH, SIKI HAC ILIKABIATH y CHUCTEMax, L0 MU
OIMHUCYEMO.

3. Omneparopamu MOXyTh OyTH aireOpaiuni omepaTopu, GYHKIIL Ta AUQEpeHIiiHi
OIepaToOpH.

4. SIxuio Bcl omepaTopyd B MaTEMaTUYHINA MOJENI € JIHIMHUMH, TO KIHLEBY MaTeMaTU4HY

MOJIeNTb BU3HAYAIOTH SIK JIIHIHHY.

30

5. B iHImIOMY BHUITa Ky MOJIENIb BBAKAIOTh HEMIHIMHOIO.

6. IIutanHs MHIAHOCTI Ta HETMIHIMHOCTI 3aJI€KUTh B1Jl KOHTEKCTY, 1 JIIHIAHI MO/ MOXYTh
MICTHTH HEIHIWHI BUPa3H.

7. HeniHiMHICTD YacTO MOB’A3YIOTh 3 TAKUMU SBUIIIAMU, K Xa0C Ta HE3BOPOTHICTb.
8. 3arajibHUM MIJXO0/IOM JI0 HEJIHINA HUX 3a/a4 € JiiHeapu3allisl.

9. [lerepMiHOBaHA MOJENb — LI€ TaKa, B AKIMA KOXKHA CYKYITHICTh CTaHIB 3MIHHUX OJIHO3HAYHO
BU3HAYAETHCS TapaMeTpaMHd CaMOi MOJENl Ta CYKYIMHOCTSMH TOIMEpPEIHIX CTaHIB IHX
3MIHHUX.

10. Tomy nerepMiHOBaHI MOJIEN1 J1FOTh OJIHAKOBO Ha JaHWW HaOIp MOYATKOBUX YMOB.

11. B croxacTuuHii MoJieJ1, HABIMIAKH, IPUCYTHS BUIAIKOBICTb, 1 CTAHU 3MIHHUX OMTUCYIOTHCS
HE €JMHUMHM 3HAYCHHSIMH, a PO3IO/I1JIOM IMOBIPHOCTI.

12. CraTnuHa MOJIeNIb HE BPaXOBY€ €IEMEHT Yacy, TOAl SIK AMHaMIYHa HOro BPaxoBYE.
13. JlunamivHi MOZeNi 3a3BUYai MPE3CHTYIOTh NU(EPEHIIIMHUME PIBHIHHSIMU.

14. Sxkmo momens omHopimHa (CTaOLIBHMM CTaH y BCIM CHCTEMi), TO TapaMeTpu €
PO3MOAICHUMH.

15. Sxmo Moxmenb € HEOAHOPIAHOK (MIHJIMBUM CTaH B CHUCTEMIi), TO TapaMeTpu €
30CEPEIKEHUMH.

Exercise 19. Use the proper tense form of the verbs in brackets (Present, Past or Future
Continuous).

1. New types of computers constantly (come) out.

2. | (learn) new software packages at five o’clock yesterday.

3. This time next week, the technicians (troubleshoot) computer problems within a company.
4. Creating new pages for the Web (get) easier all the time.

5. Hardware engineer (design) communications devices for corporate use at the time.

6. This time tomorrow my colleague (work) for a famous hardware manufacturer such as
Apple.

7. Computers (get) more powerful over previous generations.

8. When PC specialists (install) computers, they (give) some useful recommendations.
9. I wonder what my friend (do) this time next month.

10. Right now you most likely (use) a GUI interface.

11. The engineer (develop) software for the insurance company all morning yesterday.
12. 1 expect I still (work) with the same team of specialists.

13. Trends in computer storage constantly (change).

31

14. Touch screens rapidly (replace) keypads on mobile phones.

15. What you (do) next weekend? — I will (write) users manuals and training materials as
usual.

16. Your network administrators (maintain) company’s Internet connections while we (install)
security services in our main office?

17. Computing equipment (get) smaller and more sophisticated.

18. I (demonstrate) multimedia products for our new customers at 9 o’clock tonight. 19. Our
database analyst (train) our employees on the systems all day yesterday.

20. Diskettes (get) rare these days and they are replaced by USB flash memory drives.

21. | (take) part in the conference for network professionals tomorrow morning.

22. What network security analyst (do) when hackers attacked and damaged the computer
system?

23. | (discuss) a new Web project with programmers when you see me next.

24. As the specialist (design) for University’s website he (use) different sets of programming
languages.

25. Look at the time. Your client (come) in a minute and you haven’t even started testing a
new computer equipment.

26. Digital distribution over a network rapidly (replace) removable storage media such as
CDROM’s and DVD-ROM’s.

27. This time next week he (buy) new hardware.

28. When | first met IT professional he (replace) hardware systems.

29. | am afraid our professor (not deliver) lectures on network design this time next term.
30. Where he (create) multimedia products when you saw him last?

Exercise 20. Complete the sentences below using the appropriate tense forms of the verbs
in brackets (Present /Past Indefinite or Present/Past Continuous).
1. My computer exam (take place) next week.
2. When | (arrive) the professor (explain) the multi-leveled architecture of a large software
system.
3. Dean (conduct) a survey at the moment investigating how students use free educational
content on our University website.
4. He (download) e-mail files when malicious computer viruses (attack) and (disable) the
antivirus application.
5. I (wonder) what these programmers (talk) about. — They (discuss) common computer
problems and their solutions.

32

6. Network administrator (maintain) a computer network while other specialist (monitor) its
security.

7. Software engineers (not take part) in program design today because the project is not
approved.

8. I (read) my electronic course-book when suddenly the power (switch off).

9. What the student (do) to his computer system now? — | (think) he (install) an application
program.

10. My colleague still (use) Windows XP when Microsoft (release) a new version with
advanced features.

11. The programmer (design) new applications for business operations yesterday morning.
12. My friend usually (learn) foreign languages very quickly and now he (learn) German.
13. I just (update) the database at the time when | suddenly (note) unauthorized access.
14. Using different search engines (become) increasingly popular.

15. Why you (lend) him this book? I still (read) it.

Exercise 21. Choose the right form of the verbs in brackets and translate the sentences.
Mind the sequence of tenses.

1. The programming editor said, “I (am writing, was writing, will be writing, write) the source
code of an application”.

2. The student asked the lecturer what questions he (consider, would consider, was
considering) in this lecture.

3. The clerk asked if she (typed, types, is typing, was typing) data into a database.
4. He wondered if employees (was using, use, will use, were using) packaged software.

5. Ann said with regret that she (can’t, is able to, couldn’t, will be able) install security
programs.

6. He told us that he (is going, was going, will go) to take an English exam the following year.

7. They informed that participants of the conference (discussed, will discuss, were discussing)
the latest scientific discoveries at that moment.

Exercise 22. Change the sentences into indirect speech.
1. The lecturer said, “Current chip technology is approaching the limits of physics.”

2. The teacher asked his students, “Are recent advances in computing communications and
software transforming the way people live?”

3. “A number of changes are affecting mainframe technology,” he said.

33

4. “What security programs were you testing when I saw you yesterday morning?” the
programmer asked his colleagues.

5. “Are data analytics going to prevent new research opportunities to the computer graphics?”
| asked the web designer.

6.“The programmer was not using presentation software for his report yesterday morning”,
the lecturer said.

7. “Is the Internet of Things moving to the mainstream activity at the moment?” his friend
asked him.

8. “The researchers were doing quantum computing experiments when | saw them last”, the
scientist claimed.

9. “In-memory computing is rapidly growing because of its power, versatility and
incorporation into several software and hardware products,” explained the hardware
specialist.

10. The information manager told me, “Our company is planning to address big data in our
integration infrastructure.”

Exercise 23. Translate the word combinations below into Ukrainian.

Standardized general-purpose modelling language; to specify, visualize, modify, construct
and document the artifacts; object-oriented software intensive system under development; to
visualize a system’s architectural blueprints; actors, business processes, (logical) components,
activities, programming language statements, database schemas and reusable software
components; best techniques of data modelling (entity relationship diagrams); business
modelling (workflows); object modelling and component modelling; throughout the software
development life cycle; to synthesize the notations of the object modelling technique (OMT)
and object-oriented software engineering (OOSE); common and widely usable modelling
language; to model concurrent and distributed systems; a de facto industry standard; to evolve
under the auspices of the object Management Group (OMG); to be extensible; mechanisms
for customization; to be compatible (with); to recast the methods; to take advantage of the
new notations; Rational Unified Process (RUP); Abstraction Method; Dynamic Systems
Development Method; to achieve different objectives.

Text 4. Unified Modelling Language
Unified Modelling Language (UML) is a standardized generalpurpose modelling language in
the field of software engineering. It is used to specify, visualize, modify, construct and
document the artifacts of an object-oriented software intensive system under development. It
offers a standard way to visualize a system’s architectural blueprints, including elements such

34

as actors, business processes, (logical) components, activities, programming language
statements, database schemas and reusable software components. UML combines best
techniques of data modelling (entity relationship diagrams), business modelling (workflows),
object modelling, and component modelling. It can be used with all processes, throughout the
software development life cycle, and across different implementation technologies. UML has
synthesized the notations of the Object-modelling techniqgue (OMT) and Object-oriented
software engineering (OOSE) by fusing them into a single, common and widely usable
modelling language. It aims to be a standard modelling language which can model concurrent
and distributed systems. It is a de facto industry standard, and is evolving under the auspices
of the Object Management Group (OMG). UML models may be automatically transformed
to other representations (e.g. Java) by means of transformation languages, supported by the
OMG. UML is extensible, offering such mechanisms for customization as profiles and
stereotypes. UML is not a development method by itself, however, it was designed to be
compatible with the leading object-oriented software development methods. Since UML has
evolved, some of these methods have been recast to take advantage of the new notations, and
new methods have been created based on UML. The best known is IBM Rational Unified
Process (RUP). There are many other UML-based methods like Abstraction Method,
Dynamic Systems Development Method, and others, designed to provide more specific
solutions, or achieve different objectives.

Exercise 24. Answer the questions on text 4.

. What is UML?

. What is UML used for?

. In what way does UML visualize a system’s architectural blueprints?

. What kinds of modelling techniques does UML combine?

. What notations has UML synthesized?

. What kinds of systems can UML model?

. What mechanisms does UML offer for customization?

. Is UML a development method by itself?

. What are the best known objectoriented software development methods?

© 00 N O O &~ W DN P

Exercise 25. Decipher the abbreviations below.
UML, OMT, OOSE, OMG, RUP, ISO.

35

Exercise 26. Translate the word combinations below into Ukrainian.

To distinguish between the UML model and the set of diagrams of a system; a partial graphical
representation of a system’s model; to contain a “semantic backplane”; written use cases that
drive the model elements and diagrams; different views of a system mode; static (or structural)
view and dynamic (or behavioural) view; class diagrams and composite structure diagrams;
to emphasize the dynamic behaviour of the system; to show collaboration among objects;
sequence diagrams, activity diagrams and state machine diagrams; partially restricted
flexibility; structure diagram and behaviour diagram; component diagram and object diagram;
profile diagram, deployment diagram and package diagram; use case diagram and interaction
diagram; communication diagram and timing diagram; interaction overview diagram.

Text 5. UML Modelling

It is very important to distinguish between the UML model and the set of diagrams of a
system. A diagram is a partial graphical representation of a system’s model. The model also
contains a “semantic backplane” — documentation such as written use cases that drive the
model elements and diagrams. UML diagrams represent two different views of a system
mode. Static (or structural) view emphasizes the static structure of the system using objects,
attributes, operations and relationships. The structural view includes class diagrams and
composite structure diagrams. Dynamic (or behavioural) view emphasizes the dynamic
behaviour of the system by showing collaborations among objects and changes to the internal
states of objects. This view includes sequence diagrams, activity diagrams and state machine
diagrams.

Exercise 27. Do the assignments below.

1. Explain the difference between a model and a diagram.
2. Compare two different views of a system mode.

3. Name the categories of UML 2.2 diagrams.

4. Name the diagrams which represent each category.

Exercise 28. Translate the word combinations below into Ukrainian.

Relationship among the classes; to be split up into components; composite structure diagram;
collaboration; deployment diagram; execution environment; package diagram; step-by-step
workflows of components in a system; to show the overall flow of control; state machine
diagram; use case diagram; in terms of actors; to be used extensively; a subset of behaviour
diagrams; sequenced messages; interaction overview diagram; life-spans of objects; timing
diagram.

36

Text 6. UML Diagrams
Structure diagrams
Structure diagrams emphasize what things must be in the system being modeled:

Class diagram describes the structure of a system by showing the system’s classes, their
attributes, and the relationships among the classes. Component diagram depicts how a
software system is split up into components and shows the dependencies among these
components. Composite structure diagram describes the internal structure of a class and the
collaborations that this structure makes possible. Deployment diagram serves to model the
hardware used in system implementations, and the execution environments and artifacts
deployed on the hardware. Object diagram shows a complete or partial view of the structure
of a modeled system at a specific time. Package diagram depicts how a system is split up into
logical groupings by showing the dependencies among these groupings. Profile diagram
operates at the metamodel level to show stereotypes and profiles. The extension relation
indicates what metamodel element a given stereotype is extending. Since structure diagrams
represent the structure they are used extensively in documenting the architecture of software
systems.

Behaviour diagrams

Behaviour diagrams emphasize what must happen in the system being modeled:

Activity diagram represents the business and operational step-bystep workflows of
components in a system. An activity diagram shows the overall flow of control.

State machine diagram is a standardized notation to describe many systems, from computer
programs to business processes.

Use case diagram shows the functionality provided by a system in terms of actors, their goals
represented as use cases, and any dependencies among those use cases. Since behaviour
diagrams illustrate the behaviour of a system, they are used extensively to describe the
functionality of software systems.

Interaction diagrams

Interaction diagrams, a subset of behaviour diagrams, emphasize the flow of control and data
among the things in the system being modeled.

Communication diagram shows the interactions between objects or parts in terms of
sequenced messages. They represent a combination of information taken from class,
sequence, and use case diagrams describing both the static structure and dynamic behaviour
of a system.

37

Interaction overview diagram is a type of activity diagram in which the nodes represent
interaction diagrams.

Sequence diagram shows how objects communicate with each other in terms of a sequence of
messages. Also indicates the life-spans of objects relative to those messages.

Timing diagram is a specific type of interaction diagram, where the focus is on timing
constraints.

Exercise 29. Find in text 6 the English for:

CTPYKTYpHa Jiarpama; 3B’s3KM MDK KjacaMu; pO3MOAUIATHCS Ha KOMIOHEHTH; JiarpaMa
KOMIIO3UTHUX CTPYKTYp; Jlarpama po3ropTaHHs; peai3alis CUCTEMU; TOBHA ab0 4acTKOBa
KapTUHA CHUCTEMH; JiarpaMa MakeTiB; JIOT14Ha Tpyma; mpodiiorpama; moeTanmHUN IMOTIK
0i3Hec omepauiid Ta (QYHKIIOHAJBHUX OIepaliii KOMIIOHEHTIB y CHUCTEMI; YBECh MOTIK
KEepyBaHHS; JllarpaMa KIHIIEBOI'O aBTOMATy; Jlarpama MpereeHTIB; MiMHOXKHWHA Jllarpam
MOBEAIHKM; aKIIEHTYBAaTH YBary Ha MOTOLl KEpYBaHHS 1 JaHUX MK 00’ €KTaMH y CUCTEMI, 1110
MOJIETTIOEThCS; JliarpaMa KOMYHIKAIlli; y BUTJISAAI TOCTIAOBHOCTI TMOBIJOMJICHB, iarpama
OTJISITy B3a€MOJII; larpaMa mociiIOBHOCTEH; IOBrOBIUHICTh; YaCOBA CHHXPOHI3aIlisl; YaCOB1
OOMEXKEHHS.

Exercise 30. Match the names of the diagrams with their functions.
1. Class diagram components and shows the dependencies among these components.

2. Object diagram implementations, and the execution environments and artifacts deployed
on the hardware.

3. Component diagram showing the system’s classes, their attributes, and the relationships
among the classes.

4. Package diagram in terms of actors.

5. Activity diagram structure of a modeled system at a specific time.

6. Composite structure diagram groupings by showing the dependencies among these
groupings.

7. Deployment diagram step-by-step workflows of components in a system and the overall
flow of control.

8. Use case diagram systems, from computer programs to business processes.

9. State machine diagram and the collaborations that this structure makes possible.

a) depicts how a software system is split up into
b) serves to model the hardware used in system

38

c) describes the structure of a system by

d) shows the functionality provided by a system
e) shows a complete or partial view of the
f) depicts how a system is split up into logical
g) represents the business and operational

h) is standardized notation to describe many

1) describes the internal structure of a class

Exercise 31. Speak on the topics:
1. Structure diagrams.

2. Behaviour diagrams.

3. Interaction diagrams.

39

UNIT 3. HARDWARE

Translate and study the basic vocabulary.

alternating current (AC)

application

automation

Basic Input / Output System (BIOS)

boot

boot firmware

central processing unit (CPU)

chipset

Compact Disk Read-Only Memory
(CD-ROM)

Digital Versatile [Video] Disk Read-
Only Memory (DVD-ROM)

direct current (DC)

disk drive

expansion card (Tako:k expansion
board, PC card)

fan

firmware

hard disk

heat sink

40

internal bus
keyboard

main memory
monitor
motherboard
mouse

operating system
power cord

power management
power supply
Random Access Memory (RAM)
socket

storage medium
switch

terminal device
voltage

Exercise 1. Choose nouns among the following words. Read and translate the word.
Combine, simple, mouse, convert, opportunity, modern, via, and, network, require, item,
manipulate, terminal, personal, operator, occur, requirement.

Exercise 2. Give synonyms (a) and antonyms (b) for the following words:

a) expansion card, require, machinery, basic, operation, complex, item, easy, particular,
combine, user, firmware, modern;

b) different, advantage, outside, necessary, easily, wide, often, usually, input, progress,
modern.

Exercise 3. Give derivatives of the words below and explain their meanings.
Model: automate — automation — automatic — automatically

Automate, compute, combine, machine, store, communicate, refer, direct, process, calculate,
apply, access, cool, manage, operate, differ, connect, expand, improve, educate, entertain,
electron, significant, history, use.

41

Exercise 4. Give Ukrainian equivalents for the following word combinations.

A functioning computer system; to combine hardware elements with software elements;
mechanical devices, machinery and electronics; to perform physical functions; to require three
basic hardware items; to perform all data processing; a terminal device, used like a typewriter;
two-way communication between the user and the system; a storage medium; to store
programs and data; to cover such parts of the personal computer as the monitor, the
motherboard, the CPU, the RAM memory,

the expansion card, the power supply, the CD-ROM drive, the hard disk, the keyboard and
the mouse; to be the “body” of the computer; to be directly attached to the motherboard; to
include the central processing unit (CPU), the chipset, the Random Access Memory (RAM),
the Basic Input Output System (BIOS) and internal buses; to enable a computer to function;
to be cooled by a heat sink and fan; to mediate communication between the CPU and the other
components of the system; main memory; boot firmware and power management; to handle
tasks; operating system drivers; expansion cards; to convert alternating current to direct
current; to provide appropriate voltages to different components; to undergo significant
improvements; computation, automation, communication, control, entertainment and
education.

Text 1. Basic Hardware Elements
A functioning computer system combines hardware elements with software elements. The
hardware elements are mechanical devices in the system, machinery and electronics that
perform physical functions. Usually, a computer system requires three basic hardware items:
1) a personal computer, which performs all data processing;
2) a terminal device, used like a typewriter for two-way communication between the user and
the system;
3) a storage medium for storing programs or data.
The term hardware covers such parts of the personal computer asthe monitor, the
motherboard, the CPU, the RAM memory, the expansion card, the power supply, the CD-
ROM drive, the hard disk, the keyboard, and the mouse. The motherboard is the “body” of
the computer. Components are directly attached to the motherboard and include such elements
as: the central processing unit (CPU), the chipset, the Random Access Memory (RAM), the
Basic Input Output System (BIOS) and internal buses.
The central processing unit (CPU) performs most of the calculations which enable a computer
to function, and is sometimes referred to as the “brain” of the computer. It is usually cooled
by a heat sink and fan. The chipset mediates communication between the CPU and the other
components of the system, including main memory.

42

The Random Access Memory (RAM) stores all running processes (applications) and the
operating system. The Basic Input Output System (BIOS) includes boot firmware and power
management. The BIOS tasks are handled by the operating system drivers.

Internal buses connect the CPU to various internal components and to expansion cards for
graphics and sound. As for power supply, it includes a power cord, a switch, and a cooling
fan and supplies power to the motherboard and internal disk drives. It converts alternating
current to direct current and provides appropriate voltages to different components such as
the hard disk, the CD-ROM, the motherboard, the CPU socket, etc. Computer hardware has
undergone significant improvements over its history. That is why it has become a platform
for uses other than computation, such as automation, communication, control, entertainment,
and education. Each field in turn has imposed its own requirements on the hardware, which
has evolved in response to the computer uses requirements.

Exercise 5. Find in text 1 the English for:

NOEJHYBATH €JIEMEHTH alapaTHOro Ta IMPOrpaMHOro 3a0e3NeueHHs; MEXaHIuHI MPHUCTPOI,
MEXaHIYHEe OO0JIaJIHaHHS Ta EJNEKTPOHIKA; MNOTPeOyBATH TPbOX OCHOBHUX amapaTHHUX
€JIEMEHTIB; BUKOHYBATH OOpPOOJICHHS JaHUX; IBOCTOPOHHIN 3B’SI30K MK KOPUCTYBadeM Ta
CUCTEMOIO; HOCIH JaHMX; 30epiraTv mporpamMu Ta JaHi; KapTa pO3IIMPEHHs, MaTepUHChbKa
iata Ta ONEpaTUBHA IaM ATb; JDKEPENO JKUBJICHHS Ta JUCKOBOJA JUISl KOMIAKT-IUCKIB;
’KOPCTKHUI MCK, KJIaBlaTypa Ta MUILA; [IEHTPAIbHUN

mporecop, MIKpOnpollecopHuii Habip Ta ©Ga3oBa cuUCTEMa BBEJCHHS/BUBEICHHS,
OXOJIOJPKYBAaTHUCA TEIUIOBIIBIIHUM pPaAlaTOpOM Ta BEHTWIATOPOM; 30epiratv NpHKIaIHI
porpaMu Ta omnepauiiiHy CUCTEMY; BKJIIOUYAaTH MIKPOIpPOrpamMy MO4aTKOBOI'O 3aBaHTa)KEHHS
Ta KEpyBaHHS €JIEKTPOKUBIICHHAM; IEPETBOPIOBATH 3MIHHUNA CTPyM Ha MOCTIMHUY;
3a0e3revyyBaTy NOTPIOHY HAMPYTY.

Exercise 6. Say whether the statements below are true or false. Correct the false ones.

1. The software elements are mechanical devices in the system, machinery and electronics
that perform physical functions.

2. As a rule, computersystem needs two basic hardware items to work perfectly.

3. The term hardware covers such parts of the personal computer as the monitor, the
motherboard, the CPU, the RAM memory, the expansion card, the power supply, the CD-
ROM drive, the hard disk, the keyboard, and the mouse.

4. Hardware elements are directly attached to the monitor.
5. The Basic Input Output System tasks are handled by the operating system drivers.

43

6. Internal buses connect the CPU to various internal components and to expansion cards for
graphics and sound.

7. Computer hardware has undergone significant improvements over its history.

Exercise 7. Form all possible word combinations with the words from both columns,
Translate them.

1) to combine a) two-way communication

2) to require b) the motherboard

3) to be used for c) significant improvements

4) to be directly attached to d) three basic hardware items

5) to be handled by e) hardware elements with software
elements

6) to include f) calculations

7) to undergo g) the operating system drivers

8) to perform h) “the brain” of the computer

9) to be referred to as 1) alternating current to direct current

10) to convert j) boot firmware and power management

Exercise 8. Fill in the blanks with prepositions on, of, in, to, with, over, by where
necessary.
1. A functioning computer system combines hardware elements ... software elements.

2. The hardware elements are mechanical devices ... the system, machinery and electronics
that perform ... physical functions.

3. Power supply supplies power ... the motherboard and internal disk drives.
4. The motherboard is the “body” ... the computer.

5. Components are directly attached ... the motherboard.

6. The BIOS tasks are handled ... operating system drivers.

7. Computer hardware has undergone significant improvements ... its history.
8. Each field has imposed its requirements ... the hardware.

9. Components are attached ... the motherboard.

Exercise 9. Fill in the blanks with proper terms (the hardware elements, a power supply,
the central processing unit, the BIOS, the motherboard, a personal computer, a terminal
device) to complete the sentences.

44

1. are the mechanical devices in the system, the machinery and the electronics that
perform physical functions.

2. performs all data processing.

3. Is used like a typewriter for twoway communication between the user and the
system.

4, IS the “body” of the computer.

5. performs most of the calculations which enable a computer to function.

6. includes boot firmware and power management.

7. includes power cord, switch, and cooling fan and supplies power at appropriate

voltages to the motherboard and internal disk drives.

Exercise 10. Answer the questions on text 1.

. What combines different elements of the PC?

. What are the hardware elements?

. How many basic hardware items does a computer system usually require?
. What does the term hardware cover?

. What is the “body” of the PC?

. What components are directly attached to the motherboard?

. What function does the central processing unit perform?

. What is the “brain” of the PC?

. What is the CPU usually cooled by?

. What kind of communication does a chipset mediate?

. What does the RAM store?

. What does the BIOS include?

. What are the BIOS tasks handled by?

. What connects the CPU to various internal components?

. What does the power supply include?

. What is the power supply designed for?

. Why has computer hardware become a platform for different uses?
. What kinds of uses has hardware become a platform for?

O© 0 N O O & W N P

e el e e o
00O N O O & W N - O

Exercise 11. Make up questions to the italicized parts of the sentences.
1. Computer hardware has undergone significant improvements over its history.
2. Computer hardware has become a platform for different uses.

45

3. Usually, a computer system requires three basic hardware items.
4. Components are directly attached to the motherboard.

5. The CPU is usually cooled by a heat sink and fan.

6. The hardware elements perform physical functions.

7. The CPU performs most of the calculations.

8. The CPU is sometimes referred to as the “brain” of the computer.

Exercise 12. Translate into English.

1. ®yHKIIOHAaTbHA KOMII IOTEpHA CUCTEMA MOEJHYE €IEeMEHTH anapaTHOro Ta MporpaMHoOro
3a0e3MeYCHHS.

2. Sk mnpaBuio, KOMII'IOTEpHA CHUCTeMa TMOTpedye TPbOX OCHOBHHMX EJIEMEHTIB:
MEPCOHATILHOTO KOMIT I0TEpY, TEPMIHATY Ta HOCIS JaHUX.

3. [lepconanbHuii KOMIT IOTEP BUKOHY€E 0OPOOJICHHS JaHUX.

4. TepmiHai BUKOPUCTOBYIOTh SIK JPYKAPChKY MAIIMHKY JJIs ABOCTOPOHHBOT'O 3B’SI3KY MIXK
KOPHUCTYBA4€M Ta CUCTEMOIO.

5. Hociit nannx BUKOPUCTOBYIOTH JUIsl 30€piraHHs mporpam i JaHux.

6. TepMmiH «anapaTHe 3a0€3MeUeHHs OXOIUIIOE TaKi €JIEMEHTH NEPCOHAIBLHOI0 KOMIT I0TEpa,
AK: MaTepUHCbKa IUIaTa, MOHITOP, LIEHTPAJIbHUI MpOIecop, ONepaTHUBHA MaMm’sTh, KapTa
PO3IIMPEHHS, JKOPCTKUHM JUCK, OJIOK KUBJIEHHS, JUCKOBOJ IJIsi KOMITAKT-AUCKIB, KJaBlaTypa
Ta KOMIT I0T€pHA MUIIIA.

7. MarepuHChKa IJ1aTa € rOJIOBHOIO YACTHHOIO KOMIT I0Tepa.

8. KommnoHeHTH, mO KpiusiThcsi Oe3MOcepeaHbO O MATEPUHCHKOI IUIATH, BKIIOYAIOTh
[EHTPATLHAN TTPOIIECOpP, MIKPOIPOIIECOPHUI Habip, OmepaTUBHY MaM’siTh, 0a30By CUCTEMY
BBC/ICHHS/BUBEJICHHS Ta BHYTPIITHI ITWHH.

9. llenTpanbHuil TPOLIECOP BHUKOHYE OUIBIIY YacTUHY OOYMCIEHBb, SIKI JO03BOJIAIOTH
KOMIT'I0T€pY (PYHKIIOHYBATH.

10. [leHTpanpHHUII TPOIECOpP 3a3BHUAl OXOJOKYETHCS 3 JIOMOMOTOK) TEIJIOMPOBITHOTO
paaiaTopa Ta BEHTHIATOPA.

11. Mikponporecopauii HalIp € CIOIYYHOI JaHKOI MDK IEHTPaJIbHUM MPOIECOPOM Ta
THIIMMHU KOMIIOHEHTAMH CUCTEMHU, BKIIIOYAIOYU ONEPATUBHY 1AM SITb.

12. B onepartuBHii nam’sTi 30€piraroThCsl BC1 MPUKIIAAHI IPOrpaMH Ta OlepaniiiHa CucTeMa.
13. ba3oBa cuctema BBEICHHS/BUBEICHHS BKJIIOYAE MIKPONPOrpaMy IMOYaTKOBOTO
3aBaHTAXXCHHSI Ta KEPYBAHHS €JIEKTPOKUBICHHSIM.

14. 3aBnanHsiMu 0a30BOi CUCTEMHU BBEICHHSI/BUBEICHHS 3aliMalOThCS IpaliBEpH orepaniiHol
CUCTEMU.

46

15. BuyTpimHi mHUHA 3’ €IHYIOTH [EHTPAJbHUN TMPOLECOp 3 PI3HUMU BHYTPILIHIMU
KOMIIOHEHTaMU Ta KapTaMU PO3LIMPEHHS AJis IpadigyHOro Ta 3ByKOBOT'O B1AOOpaKEHHS.

16. Bnok >XKUBJEHHSA BKIIOYA€ IIHYpP JKUBICHHS, MEPEMUKA4Y Ta OXOJIOIKYBAJIbHUI
BEHTUJISATOP.

17. bnok >xuBieHHs 3a0e3medye eNeKTPOKUBICHHS MAaTEPUHCHKOI MUIATH Ta BHYTPIMTHIX
JTUCKOBO/IIB.

18. Bin neperBoproe 3MiHHUN CTPYM Ha MOCTIMHUHN, a TaKOX MOJIa€ MOTPIOHY HANPYTY 10
TaKuX KOMIIOHEHTIB, $K: »opcTkuii auck, CD-ROM, wmarepuHchka 1U1aTa, po3 €M
[EHTPAJIILHOTO MPOIIecopa.

19. Anaparse 3a0e3ne4eHHs] KOMIT I0Tepa 3a CBOIO ICTOPIIO 3a3HANI0 3HAYHUX yIOCKOHAJIEHb.

20. Komm’roTep € OCHOBOIO JUIsi BUKOHAHHS HE JIMIIE OOYHCIIEHb, aje W aBTOMAaTH3allii,
3B’SI3KY, KEPYBaHHs, 3aCOO0M pO3Bar Ta OCBITH.

Exercise 13. Retell the text “Computer Hardware”.

Exercise 14. Study the ways of constructing Indefinite, Perfect and Continuous Passive
verb forms.

You use the Passive Voice when you want to focus on the person or thing affected by the
action, rather than on the “doer” of the action (or agent).

Our house was built a hundred years ago.

My notebook has been stolen.

We use appropriate form of the verb to be + Past Participle of the main verb.
Present Indefinite More and more cars are sold every year.

Past Indefinite The Internet was developed in the 1960s.

Future Indefinite Everyone who applies will be given an interview.

Present Continuous The conference is being held next weekend.

Past Continuous Every car which left the ferry was being stopped and searched.
Present Perfect We have been invited to Paul’s presentation.

Past Perfect He had been promoted three times before becoming a director.
Future Perfect The article will have been written by two o’clock tomorrow.
Be going + Passive Infinitive

The new company is going to be opened by the President.

Modal verbs + Passive Infinitive

Books must be returned within three weeks.

47

Modal verbs + Perfect
Passive Infinitive
The office may have been left open deliberately.

Exercise 15. Change the following sentences into the Passive Voice.

Model: We bought this netbook two years ago. — This netbook was bought two years ago
by us.

1. Smart cards store vital information such as health records, drivers’ licenses, bank balances,
and so on.

2. Browsers may search, view, and even add and edit data on the World Wide Web.

3. The firm hired an enterprise architect to oversee the development of the new software
platform.

4. A malicious program will crash and terminate software with a confusing message.

5. Almost all computers, including hand-held computers, desktop computers, supercomputers,
and even video game consoles, use an operating system.

6. The university used encryption on its web site to protect information from unauthorized
access.

7. In the future, digital distribution on the Internet will replace all other forms of media
distribution including CDs, DVDs, and even radio and television broadcasts.

8. Users of the Internet can send mail messages with vast databases of information to each
other.

9. Mobile devices normally provide the programs needed to enable Wi-Fi, Bluetooth, or other
wireless connectivity.

10. Years ago, people commonly set up their home networks just to connect a few PCs, share
some documents and perhaps a printer.

11. A scanner can take a photograph or magazine article and digitize it.

12. The central processing unit (CPU) performs most of the calculations which enable a
computer to function.

13. Windows 8 is now available, but most organizations are still deploying Windows 7.

Exercise 16. Change the following sentences into the Passive Voice and ask questions on
them.
1. Small electronic device can control every move of your robotic personal assistant.
2. In the 2000s smartphones, cloud computing, and other innovations revolutionized the way
we live and work.

48

3. In the near future, computers will use nanotechnology to shrink the size of silicon chips,
increasing speed and power with parallel processing.

4. The military is currently working on the next generation of future computers.
5. The system analyst was analyzing and interpreting company’s needs at that time.

6. Practical computer systems divide software systems into three major classes: system
software, programming software, and application software.

7. Cellular phones are now also dialing up the Internet to provide e-mail and answering
machine services.

8. School innovators will require some patience as computer skills develop.

9. Our new programmer was developing software for the operating system of a computer
yesterday evening.

10. The ARPANET computer network made a large contribution to the evolution of e-mail.
11. The Operating System manages and controls the computer through the use of an interface.

12. Past architecture research often focused on chip microprocessors or stand-alone computers
with performance as main optimization goal.

13. Information and communication technology (ICT) is transforming our world, including
healthcare, education, science, commerce, government, defense, and entertainment.

14. In the future, PDA will store the entire human knowledge base.
15. Various computer professionals were writing programs in the computer department.

Exercise 17. Change the following sentences into the Active Voice. Add the doer/agent
of the action where necessary.

1. Bill Gates was known in computer circles as a founder of Microsoft Corporation and
developer of Windows.

2. Mathematical models can be used not only in engineering disciplines but also in the social
sciences.

3. Solaris was developed by Sun Microsystems as a more open option of SunOS for its
SPARC-based servers and workstations.

4. For hand-held and desktop computers, the user interface is generally considered a part of
the operating system.

5. Software programs are normally written and compiled for certain hardware platforms.

6. Mainframes will be completely replaced by the lesser categories of mid-range computers,
workstations, and powerful PCs.

7. Multimedia systems are known for their educational and entertainment value.

49

8. Modern technologies are being researched and developed including biocomputers and
quantum computers.

9. Networks with speeds of 100 gigabits and higher are being planned using fiber optics for
the Internet 2 system.

10. An alliance between IBM, Motorola, and Apple was formed several years ago to develop
and manufacture the PowerPC chip.

11. Microcomputers can be configured to serve multiple users.

12. Today thousands of applications are designed for almost every purpose, from writing
letters to playing games.

13. Mobile computing can be employed when we interact with our smartphones.

14. Future Internet appliances will be based on embedded computing systems.

15. The computer system was being upgraded by the administrator all morning yesterday.

Exercise 18. Define the tense and voice used in the following sentences (Present, Past,
Future Indefinite / Continuous Active/Passive) and translate them.

1. Programmers are also known as ‘software developers’.

2. The user was advised to reboot the computer after a serious crash in which the computer
no longer responded.

3. Embedded systems are typically controlled by inexpensive, specialized processors which
can only handle very specific tasks.

4. More and more, software is being distributed over the Internet, as open source, shareware,
freeware, or traditional proprietary and upgrade versions.

5. By the early 1990’s, computers were commonly used for writing papers, playing games,
financial accounting, and business productivity applications.

6. Each Windows OS is optimized for different users, hardware configurations, and tasks.
7. Since main memory is volatile, all contents are lost when the computer power is turned off.
8. In what way will computers be linked on a network?

9. The notebook was performing slowly when changing programs, so the technician installed
more RAM and this solved the problem.

10. The original backbone of the Internet is based on an old military network called
ARPANET which was built by ARPA in the late 1960’s.

11. Technology will offer some great capabilities in pulling together the design of any
software system.

12. Not surprisingly, Linux’s OS market share is growing very quickly around the world.
13. What operating system are you installing? — Windows Vista.
50

14. Since nobody likes to wait for a computer, high-quality computers will have fast
processors and lots of quick memory.

15. The letter is being sent now.

Exercise 19. Complete these sentences using the appropriate passive form of the verbs
in brackets (Present, Past or Future Indefinite / Continuous).

1. Applications (mean) to make users more productive and get work done faster.

2. An embedded OS can (find) inside an increasing number of consumer gadgets including
phones (iPhone OS), PDAs (Windows CE), and digital media players.

3. The way that the motherboard (design) and (lay out) dictates how the entire computer is
going (organize).

4. The instructions (perform) by a computer while the programs (debug) and (test).

5. Intel (start) by several people who are now legends in the computer world, including Robert
Noyce and Gordon Moore.

6. Bluetooth technology (optimize) for networking between common consumer electronics
such as mobile phones, mp3 players, and similar devices.

7. We project that mainframe computer applications for businesses essentially (replace), either
by client/server applications or new language software.

8. The antivirus programs currently (install) by a specialist.

9. The Macintosh operating systems (design) to (use) on Apple Macintosh computers. 10. The
computer contacted the address and the information (make) available to the operator.

11. Most users have no idea that their information (collect) and (store) at the moment on their
computer.

12. Ultimately people’s power (must exercise) to ensure that computers (use) not only
efficiently but in a socially responsible way.

13. Regardless of the networking choice, future Internet appliances (base) on embedded
computing systems.

14. When nanotechnology fully (develop), machines (assemble and snap) together using the
chemistry of atoms and molecules.

15. New applications program (write) by the program developer yesterday evening.

Exercise 20. Use Indefinite or Continuous Tenses (Present, Past or Future) of the verbs
in brackets choosing between the Active and Passive forms.

1. A company or organization (store) its information in electronic documents on one of the
Internet computers.

51

2. The whole exciting Internet world (wait) for you!
3. In some families children (not allow) to surf the net on their own.

4. When the word processor application (crash), the user (have) to abort the program and
(lose) all his unsaved changes.

5. As a student of English and Technology, you (hear) people use the words ‘Internet’ and
‘World Wide Web’ almost interchangeably.

6. In the future, all forms of media distribution including CDs, DVDs, and even radio and
television broadcasts (replace) by digital distribution on the Internet.

7. Digital cameras (become) more common.
8. The program (design) by the software engineer now.

9. When the network administrator (format) the wrong hard disk drive array, he accidentally
(lose) all the company data.

10. The man (not can) spell-check documents in German last Saturday because his copy of
Word (upgrade).

11. The computer user (not can) access a computer resource because he (forget) his username
and password.

12. You (find out) the answer to almost everything on Google nowadays.
13. When you (surf) the net, you (move) from one document or the web site to another.

14. Computer science experts predict that more traditional desktop computer (replace) by
powerful and affordable laptop computers and netbooks.

15. The first version of a software application (not release) to the public because it (contain)
serious bugs.

16. In recent years, more and more features (include) in the basic GUI OS, including notepads,
sound recorders, and even web browsers and games.

17. Sixty years ago computers also (cost) a lot of money to build and operate and they only
(use) by large organizations.

18. Computers all over the world (join) by phone lines, satellite or cable.
19. Students (download) several files from the university’s server yesterday morning.
20. This time next week our department (work) on this project.

21. When computers first (appear), they (take up) whole rooms and (require) specialized
training to operate them.

22. The hackers (admit) deleting new programs while they (interview) by security police.
23. PC (protect) from different viruses by special programs.

24. The commercial global Internet system with its World Wide Web applications (begin) in
1993-1994.

52

25. This time tomorrow the program designer (write) specifications for new computer
systems.

Text 2. Hardware Categories
A typical computer consists of two parts: hardware and software. Hardware is any electronic
or mechanical part of the computer system that you can see or touch. It is categorized as
follows:

Input hardware is used to collect data and input it into the computer system in computer-
usable form. The keyboard and mouse are the most common input devices.

Processing hardware retrieves and executes (interprets) instructions (software) provided to the
computer. The main components of processing hardware are the central processing unit
(CPU), which is the brain of the computer, and main memory, where all instructions and/or
data ready for processing are held. Since main memory is volatile, all contents are lost when
the computer’s power is turned off. Output hardware provides a means for the user to view
information produced by the computer system — either in hardcopy form, such as printouts
from a printer, or softcopy form, such as a display on a monitor, a TV-like screen.
Communications hardware facilitates connections between computers and computer systems
over phone lines and other channels. Examples are modems, cables and fax modems. Software
Is a set of instructions, called a program, which tells a computer what to do. Software that
runs the hardware and allows the computer to manage its resources is system software.
Software that performsa general business function is referred to as applications software.

Exercise 21. Fill in the blanks with proper terms from text 2 to complete the sentences.

1. refers to any electronic or mechanical part of the computer system that you can
see or touch.

2. a set of instructions, called a program, which tells a computer what to do.

3. runs the hardware and allows the computer to manage its resources.

4. performs a general business function.

5. retrieves and executes instructions provided to the computer.
6. facilitates connections between computers and computer systems over phone
lines and other channels.

7. Is used to collect data and input it into the computer system in computer-usable
form.

8. provides a means for the user to view information produced by the computer
system.

53

Exercise 22. Speak on computer hardware adding some information you know from
your own experience.

Exercise 23. Read, translate and entitle text 3.
Text 3

Nowadays PCs represent the wide-spread class of digital machines. There are many different
individual components which can be mixed and matched in thousands of different
configurations. This lets you customize the PC you either buy or build to meet your exact
needs. The system case, sometimes called the chassis or enclosure, is the metal and plastic
box that houses the main components of the computer. Most people do not consider it a very
important part of the computer (perhaps in the same way they would not consider their own
skin a very important body organ). While the case is not as critical to the system as some other
computer components (like the processor or hard disk), it has several important roles to play
in the functioning of a properlydesigned and well-built computer. The case does not appear
to perform any function at all, at first glance. However, this definitely is not true; the case is
in fact much more than just a box. The motherboard is mounted into the case, and all the other
internal components are mounted into either the motherboard or the case itself. The case must
provide a solid structural framework for these components to ensure that everything fits
together and works well. The system case performs several important functions for your PC,
for instance, protection for the computer circuits, cooling and system organization.

Exercise 24. Put key questions to text 3.

Exercise 25. Read and translate text 4.
Text 4. Motherboard

The motherboard is, in many ways, the most important component in your computer (not the
processor, even though the processor gets much more attention.). The motherboard and its
major components (the chipset, BIOS, cache*, etc.) are the major systems that this brain uses
to control the rest of the computer. Having a good understanding of how the motherboard and
its contained subsystems work is probably the most critical part of getting a good
understanding of how PCs work in general. The motherboard plays an important role in all
aspects of the computer system. In one way or another, everything is eventually connected to
the motherboard. The way that the motherboard is designed and laid out dictates how the
entire computer is going to be organized. The motherboard contains the chipset and BIOS
program, which control most of the data flow within the computer. Almost all communication

54

between the PC and its peripherals, other PCs, and the user goes * cache — nmagoneparnsHa
nam’sth, ke, HamoneparuBHui 3I1 through the motherboard. The motherboard dictates
directly the choice of processors, memory, system buses for use in the system, and these
components affect the system’s performance. It also determines what types of peripherals you
can use in your PC. The capabilities of the motherboard specify to what extent you will be
able to upgrade your machine. For example, there are some motherboards that will accept
regular Pentiums of up to 133 MHz speed only, while others will go to 200 MHz. Obviously,
the second one will give you more room to upgrade when starting with a P133.

Exercise 26. Write a summary of the text “Motherboard”.

Exercise 27. Say whether the statements below are true or false. Correct the false ones.
1. Nowadays PC represents the useful part of design idea of every living-room.
2. The system case is usually one of the most overlooked parts of the PC.

3. The main functions of the system case are to protect the computer circuits, cooling system
and repair the motherboard.

4. Any computer system can’t work without the motherboard as it is its heart.
5. The chipset and other motherboard circuitry are the liver of the motherboard.

6. The main function of the chipset is to direct traffic and control the flow of information
inside the computer.

7. The system buses are the electrical channels through which various parts of the computer
communicate.

8. The BIOS is a computer program that helps you to learn hardware.

9. The BIOS gives you the opportunity to set or change many different parameters that control
how your computer will function.

10. The system cache is not large, and we can find it between the processor and the system
memory.

11. Each time the processor requests great amounts of meals.
12. System case, motherboard and system devices are personal computer components.

Exercise 28. Agree or disagree with the following statements. Give your reasons.

1. Using a computer helps us to develop our language skills.
2. Computers have greatly changed the way we work and study.

55

Exercise 29. Make a list of advantages and disadvantages of using a personal computer.
Discuss it with your group-mates.

Exercise 30. Find some additional information and speak on the topics:
1. The CPU.

2. The main memory (RAM and ROM).

3. Peripherals (input devices, output devices, storage devices).

56

UNIT 4. OPERATING SYSTEMS

Ubuntu | Mag Windows Android Chrome

Translate and study the basic vocabulary.

dumb terminal

embedded (built-in) operating system

file system

graphical user interface

hand-held computer

hard drive, hard disk

host

master system

move data

multitasking

multi-tasking operating system

multi-user operating system

networking

real-time operating system

scalable processor architecture
(SPARC)

share (resources)

single-task(ing) operating system

single-user operating system

spreadsheet

universal serial bus (USB)

USB key, USB drive, flash drive

video game console

video/visual display unit (VDU)

word processing

57

Exercise 1. Choose verbs among the following words. Read and translate the word.
Operating, manipulate, priority, include, contain, multitasking, system, receive, expensive,
offer, software, simplify, responsible, operate, handheld, find, multi-user, tend.

Exercise 2. Give synonyms (a) and antonyms (b) for the following words:

a) manage, make easier, write programs, hand-held computer, however, execute, display,
communicate the message, accept, machinery, single-user, design, laptop computer, enable,
common, split, locate, develop, host, easy, apply, operate, affect, significant, built-in,
memory;

b) easy, significant, input, responsible, centre, good, single-user, all, include, oldest,
embedded, effectively, different.

Exercise 3. Write derivatives of the words below and explain their meanings.

Model: simple — simplify — simplification — simplicity — simply

Simple, ease, manage, coordinate, apply, operate, inform, execute, science, effect, store,
inform, process, signify, differ, major.

Exercise 4. Give Ukrainian equivalents for the following word combinations.

To be responsible for; the management, coordination and sharing of computer resources; to
act as a host for applications that are run on the machine; a master system; to manage the basic
operation of the computer; to relieve applications from having to control the hardware; to
make it easier to write programs; hand-held computers and video game consoles; embedded
operating system; some features; to execute a program; to print or display the result of a
program on the printer or the screen; store the output data or programs; to communicate the
message from the system to the user; to accept input from the user through the keyboard or
mouse; to be designed to manage the computer; single-user, multi-tasking operating system;
to take advantage of the computer resources simultaneously; the most common operating
systems; built-in networking support; multi-user environment; regardless of the media;
SPARC-based servers; a powerful and expensive computer; to be built for serving information
to many PCs or dumb terminals; to have the largest share of the Internet market.

Text 1. Operating System Functions and Categories

An operating system is an interface between the hardware and the user. It is responsible for
the management, coordination and sharing of computer resources. The operating system acts
as a host for applications that are run on the machine. It is the master system of programs that
manages the basic operation of the computer. This relieves applications from having to control
the hardware and makes it easier to write programs. Almost all computers, including hand-
held computers, desktop computers, supercomputers, and even video game consoles, use an
operating system. Some of the oldest models may however use an embedded operating system
on a compact disk or other data storage devices.
A good operating system should have the following features:
1) help in loading of programs and data from external sources intothe internal memory before
they are executed,

58

2) help programs to perform input/output operations, such as:

a) print or display the result of a program on the printer or the screen;

b) store the output data or programs written on the computer in a storage device;

c) communicate the message from the system to the user through the VDU; and

d) accept input from the user through the keyboard or mouse.

The broad categories of operating systems are:

1) real-time operating systems used to control machinery, scientific instruments and industrial
systems;

2) single-user, single-task operating systems designed to manage the computer so that one
user can effectively do one thing at a time;

3) single-user, multi-tasking operating systems used by most people on their desktop and
laptop computers today. Windows and Mac OS are examples of an operating system that will
let a single user have several programs in operation at the same time, and

4) multi-user operating systems allow many different users to take advantage of the computer
resources simultaneously.

The most common operating systems include Microsoft Windows, Mac OS, UNIX, Linux
and Solaris. Windows lets you display your work in windows. A window is a portion of the
video display area dedicated to some specific purpose. With Windows, which supports
multitasking and graphical user interface, you can display several windows on a computer
screen, each showing a different application, such as word processing or spreadsheet. You
can easily switch between the applications and move data between them. Windows 7 is the
recent version of Microsoft Windows family. Microsoft Windows has a significant majority
of market share in the desktop and notebook computer markets, while servers generally use
Linux or other Unix-like systems. Embedded device markets are split among several operating
systems. The Macintosh operating system was designed to be used on Apple Macintosh
computers. This operating system supports multi-tasking and enables users to read MS-DOS
and Windows files. The UNIX operating system is one of the oldest operating systems. Itis a
multi-tasking operating system that includes built-in networking support. It is a popular
operating system in universities, where a multi-user environment is often needed. Unlike other
operating systems, Linux and UNIX allow any file system to be used regardless of the media
it is stored in, whether it is a hard drive, a disc (CD, DVD...), a USB key, or even contained
within a file located on another file system.

Solaris was developed by Sun Microsystems as a more open option of SunOS for its SPARC-
based servers and workstations. Sun machines are popular, powerful, and expensive
computers built for serving information to many PCs or dumb terminals. Their processors can
perform several tasks simultaneously. Many universities and large corporations use Sun
machines to serve information on their networks. Currently, Solaris is one of the most popular
versions of UNIX and has the largest share of the Internet market.

59

Exercise 5. Find in text 1 the English for:

iHTepdeiic MK anmapaTHUM 3a0e3MeUYeHHSIM Ta KOPHUCTYBadeM; BIANOBIIATH 3a KEPyBaHHS,
KOOPJAMHAIIIIO Ta PO3IMOALT peCYpCiB; TOJOBHA CUCTEMA; 3BUIbHITH MPUKIIAIHI IPOrpaMu Bij
HEOOXIJTHOCTI KepyBaTH amapaTHUMH 3aco0aMH; TOJIETIIYBaTH HAMHMCAHHS TPOrpam;
KHUIIICHBKOBI ~ KOMIT'IOTEpU Ta TMPUCTABKU JJIs BiJIeOirop; BMOHTOBaHa (BOyjoBaHa)
orepalliiHa CHUCTeMa; MPHUCTPOi 30epiraHHs JaHWX; MAaTH TaKi BIACTHBOCTI; OmeparliiiHa
CUCTEMa PEaJbHOr0 Yacy; MpUiIaju JJIsi HAYKOBUX JOCHIPKEHb Ta MPOMUCIOBI CHCTEMH;
orepailiiiHa CUCTEeMa IHJIMUBIAYyaJIbHOTO KOPHUCTYBAHHS; MEpelaBaTH TMOBIJOMJIEHHS Bij
CUCTEMHU [0 KOpPHCTyBada; MpuiMatu BXiAHYy iHopmaIllito; OararozamayHa ornepariiiina
cucTeMa; 0araTOKOpHUCTyBaIlbKa CHCTEMa; IO3BOJSATH PI3HUM KOPHUCTyBadaM OIHOYACHO
BUKOPUCTOBYBAaTH KOMII IOTEPHI PECypCH; HAWIOMIMPEHIIII ONepaliiHl CUCTEMHU; YacTHUHA
TUIONII BiJICOJUCIUIES, IO Ma€ MEBHE MPU3HAYEHHS, MIATPUMYBATH OaraTo3aJadHiCTh Ta
rpadiuHuii iHTEpPeiic KopucTyBaya; 00poOJIEHHs TEKCTIB Ta BETMKO(POpMAaTHA (€1EKTPOHHA)
Ta0IHIIS; TEPEMUKATH PUKIIA/IHI TPOrPaMHU Ta TepecuiiaTu iHGOpMAIIit0 MK HUIMHU; OCTaHHS
BepCisl; AOMIHYBAaTHU HAa PUHKY HACTUIBHUX KOMIT'IOTEPIB Ta HOYTOYKIB; BMOHTOBAaHHI
NPUCTPili; BMOHTOBAaHA MIATPUMKA MEPEKEBOTO PEXKUMY; 0araTOKOPUCTYBaIlbKe
CEpEeIOBUIIE; BUKOPUCTOBYBATUCS HE3AJIEKHO BiJl HOCIS;, TOTYKHI Ta JOPOTi KOMIT IOTEPH;
nojasatu iHpopMariro 6ararboM [1K; ogHOUYaCHO BUKOHYBATH KUJIbKa 3aB/IaHb.

Exercise 6. Say whether the statements below are true or false. Correct the false ones.

1. An operating system is an interface between the hardware and the user.

2. It is responsible for the management, coordination and sharing of computer resources.

3. It is the master system of programs that manages the basic operation of the software.

4. The operating system acts as a host for system programs that are run on the machine.

5. The operating system relieves applications from having to control the hardware but makes

it more difficult to write programs.

6. Almost all computers, including hand-held computers, desktop computers, supercomputers,

and even video game consoles, use an operating system.

7. A good operating system should help in loading of programs and data from external sources

into the internal memory before they are executed and help programs

to perform input/output operations.

8. Windows and Mac OS are multi-user operating systems that allow many different users to

take advantage of the computer resources simultaneously.

9. The most common operating systems include Mac OS, UNIX, Linux and Solaris.

10. Windows lets you display your work in cells.

11. A window is a portion of the video display area dedicated to some specific purpose.

12. WithWindows, which supports multitasking and graphical user interface, you can display

several windows on a computer screen, each showing a different application, such as word

processing or spreadsheet.

13. Windows 2006 is the recent version of Microsoft Windows family.

14. Microsoft Windows has a significant majority of market share in the servers and

notebook computer markets.

15. The Macintosh operating system was designed to be used on Apple Macintosh computers.
60

16. The Macintosh operating system does not support multi-tasking and enables users to read
Windowvs files.

17. The UNIX operating system is one of the oldest operating systems.

18. UNIX is a single-user operating system that includes built-in networking support. 19.
Linux and UNIX allow any file system to be used regardless of the media it is stored in.

20. Solaris was developed by Sun Microsystems as a more open option of SunOS for its
SPARC-based servers and workstations.

21. Sun machines are popular, powerful, and expensive computers built for serving
information to many mainframes and supercomputers.

22. Sun machines processors can perform several tasks simultaneously.

23. Currently, Solaris is one of the most popular versions of UNIX and has the largest share
of the Internet market.

Exercise 7. Form all possible word combinations with the words from both columns.
Translate them.

1) to manage a) computer resources

2) to control b) several operating systems

3) to store c¢) multitasking

4) to take advantage of d) basic operation of the computer

5) to switch between e) serving information to PCs

6) to display f) the output data or programs

7) to support g) machinery and scientific instruments
8) to be split among h) the work in windows

9) to be built for 1) several tasks simultaneously

10) to perform J) the applications

Exercise 8. Fill in the blanks with prepositions to, in, into, on, of, for, from, between,
among, through, at, by where necessary.

1. An operating system is an interface ... the hardware and the user.

2. It is responsible ... the management, coordination and sharing ... computer resources.

3. The operating system acts as a host ... applications that are run ... the machine.

4. It is the master system ... programs that manage the basic operation ... the computer.

5. This relieves applications ... having to control the hardware..

6. A good operating system should help ... loading ... programs and data ... external sources
... the internal memory.

7. Operating system should communicate the message ... the system ... the user ... the VDU
and accept input ... the user ... the keyboard or mouse.

8. Single-user, multi-tasking operating systems are used ... most people ... their desktop and
laptop computers today.

9. Windows and Mac OS are examples ... an operating system that will let a single user have
several programs ... operation ... the same time.

10. A window is a portion ... the video display area dedicated ... some specific purpose.

61

11. You can easily switch ...the applications and move data ... them.

12. Microsoft Windows has a significant majority ... market share ... the desktop and
notebook computer markets.

13. Embedded device markets are split ... several operating systems.

14. Unlike other operating systems, Linux and UNIX allow any file system to be used
regardless ... the media it is stored

15. Solaris was developed ... Sun Microsystems as a more open option ... SunOS ... its
SPARCbased servers and workstations.

16. Sun machines are popular, powerful, and expensive computers built ... serving
information ... many PCs or dumb terminals.

Exercise 9. Fill in the blanks with proper terms (operating system, Unix, Windows,
multi-user operating system, Macintosh operating system, Sun machines, window,
Solaris) to complete the sentences.

1. Is a portion of the video display area dedicated to some specific purpose.

2. IS an operating system that allows many different users to take advantage
of the computer resources simultaneously.

3. are popular, powerful, and expensive computers built for serving
information to many PCs or dumb terminals.

4, is one of the most popular versions of UNIX developed by Sun
Microsystems as a more open option of SunOS.

5. Is one of the oldest multi-tasking operating systems that includes built-in
networking support.

6. IS an operating system that lets you display your work in windows.

7. Is an interface between the hardware and the user.

8. IS an operating system that was designed to be used on Apple-Macintosh
computers.

Exercise 10. Answer the questions on text 1.

. What is an operating system?

. What is it responsible for?

. What are the functions of the operating system?

. What does the operating system relieve applications from?

. What kinds of computers use an operating system?

. What kind of operating system do the old models use?

. What features should a good operating system have?

. What are the broad categories of operating systems?

. What are real-time perating systems used for?

10. What are single-user, single-task operating systems designed for?

11. What operating systems are used by most people on their desktop and laptop computers
today?

12. What operating systems allow many different users to take advantage of the computer
resources simultaneously?

O©ooO~NOoO OIS~ WN P

62

13. What are the most common operating systems?

14. What does Windows allow the users to do?

15. What operating system has a significant majority of market share in the desktop and
notebook computer markets?

16. What operating systems do servers generally use?

17. What files does the Macintosh operating system enable users to read?
18. What kind of system is the UNIX operating system?

19. How do Linux and UNIX differ from other operating systems?

20. What kind of computers was Solaris developed for?

21. What kind of computers are Sun machines?

22. What do many universities and large corporations use Sun machines for?
23. What operating system has the largest share of the Internet market?

Exercise 11. Put all possible questions to the sentences below.

1. An operating system is an interface between the hardware and the user.

2. An operating system is responsible for the management, coordination and sharing of
computer resources.

3. The operating system relieves applications from having to control the hardware.

4. Almost all computers, including hand-held computers, desktop computers, supercomputers,
and even video game consoles, use an operating system.

5. Some of the oldest models may however use an embedded operating system.

6. A good operating system should help in loading of programs and data from external sources
into the internal memory before they are executed.

7. The most common operating systems include Microsoft Windows, Mac OS, UNIX, Linux
and Solaris.

8. You can display several windows on a computer screen.

9. The Macintosh operating system was designed to be used on Apple Macintosh computers.
10. This operating system supports multi-tasking and enables users to read MS-DOS

and Windows files.

11. Their processors can perform several tasks simultaneously.

Exercise 12. Translate into English.

1. Onepaniiina cuctema — 1€ iHTepdeiic Mixk anapaTHUM 3a0€3MEUEHHAM Ta KOPUCTYBAUYEM.
2. OrmepariiiHa cucTeMa BIJNOBiJIa€ 3a KEPYBaHHS KOMIT IOTEPHHUMH peCcypcaMu, ix
KOOPJAMHAIIIIO Ta PO3MOILIL.

3. Ile ronoBHa cucteMa cepell mporpam, 1o KepyrTb poOOTOI0 KOMIT I0TEpA.

4. OmepariiitHa cucTeMa 3BUIBHSE MPHUKIAIHE TIporpaMHe 3a0e3MeueHHs B1J HEOOX1THOCTI
KepyBaTH alapaTHUM 3a0€3IIeUEHHSIM Ta IOJICTIIY€E HAIMCAHHS ITPOrpaM.

5. OmneparriifHi CHCTEMH peaTbHOTO 4Yacy BUKOPHCTOBYIOTH [IJIsi KEPYBAHHS MEXaHIYHUM
o0JaiHAHHAM, TpUIaaMu JJI1 HAYKOBHUX JOCIII)KEHb Ta MPOMHUCIOBUMH CUCTEMaMHU.

6. butbmiicTe JrOAe BHKOPUCTOBYIOTH y CBOIX HACTUIBHHX KOMIT IOTEPAaX Ta HOYTOyKax
Oararo3ajgayHi orepariiiHi CHCTEMH 1HIUBITYaIbHOTO KOPUCTYBAHHS.

63

7. IcHYIOTH Taki KJacu ONEpaIiifHUX CHUCTEM: ONEpaIliifHi CHCTEMH pPeaJhbHOTO 4Yacy,
OJIHO33/Ia4H1 OmepalliiHl CHCTEeMH IHAMBIIYyaJIbHOTO KOPHUCTYBaHHS; Oararo3ajadHi
orepauiiHi CUCTEMHU 1HIUBIIyaIbHOTO KOPUCTYBAHHS Ta 0ararOKOpHUCTYBAalbK1 ONepaliifHi
CUCTEMHU.

8. HalinmommpeHimi oneparttiifdi cuctemu BriatodaroTh Microsoft Windows, Mac OS, UNIX|,
Linux Ta Solaris.

9. «BikHOY» — 11€ YaCcTUHA TUIOIII BIICOIUCIIIES, TPU3HAYEHA /IJIsl IEBHOI METH.

10. Windows miarpumye 6araTo3agadHicTh Ta rpadiqamii iHTepdeiic KopucTyBaya.

11.3 Windows MO’XHa TIEpEXOJUTH BiJ OJHIET IporpaM JO IHIIOI Ta IepecuIaTh
1H(OpMAIIII0 MI>)K HUMH.

12. Microsoft Windows nepeBakae Ha pUHKY HACTUIbHUX KOMII FOTEPIB Ta HOYTOYKIB, TOA1
SK CepBepH 3a3BUYail BUKOPUCTOBYIOTH Linux uu iHii cucremu, noaioxi 1o UNIX.

13. Ha BigMiHy Big 1HIIUX omnepamiiHux cucteM, Linux Ta UNIX go03BONsIOTH
BUKOPUCTOBYBATH Oynb-Ky (ailloBy CHCTEMYy, HE3QJIEKHO BiJ HOCIS, HAa SKOMY BOHA
30epiraeTbesl.

14. Solaris 6yna cTtBopena komnaniero Sun Microsystems sik 6u1b1I BiikpuTa Bepcist SunOS
JUTs 11 cepBepiB Ta pOOOYHX CTAHIIIN.

15. Mamman Sun € NOMYyJISPHUMHM, NMOTYKHUMH MAIIMHAMM, CTBOPEHUMH JUIS HAJaHHS
iHpopmariii 6arateom [1K Ta nmpoctum Tepminazam.

16. Ha croromni Solaris € oaniero 3 HaiOinpm nomynsipaux Bepcii UNIX 1 goMiHye Ha
[nTepHeT pUHKY.

Exercise 13. Retell the text “Operating Systems”.

Text 2. Operating System Interfaces

Operating systems offer a number of services to application programs and users. Applications
access these services through application programming interfaces (APIs) or system calls. By
invoking these interfaces, the application can request a service from the operating system,
pass parameters, and receive the results of the operation. Users may also interact with the
operating system with some kind of software user interface (Ul) like typing commands by
using command line interface (CLI) or using a graphical user interface (GUI, commonly
pronounced “gooey”). For handheld and desktop computers, the user interface is generally
considered a part of the operating system. On large multi-user systems like UNIX and UNIX-
like systems, the user interface is implemented as an application program that runs outside the
operating system. The operating system acts as an interface between an application and the
hardware. The user interacts with the hardware from "the other side". The operating system
Is a set of services which simplifies the development of applications. Executing a program
involves the creation of a process by the operating system. The kernel creates a process by
assigning memory and other resources, establishing a priority for the process (in multi-tasking
systems), loading program code into memory, and executing the program. The program then
interacts with the user and devices performing its intended function.

64

Exercise 14. Say whether the statements below are true or false. Correct the false ones.
1. An operating system is an interface between the application software and system software.
2. Operating systems offer a number of services to application programs and users.

3. Applications access these services through APIs or system calls.

4. Users may also interact with the operating system with some kind of software Ul like typing
commands by using CLI or using a graphical user interface.

5. For hand-held and desktop computers, the user interface is generally considered a part of
the hardware.

6. On large multi-user systems like UNIX and UNIX-like systems, the user interface is
implemented as an application program that runs outside the operating system.

7. The operating system acts as an interface between an application and the hardware.

8. The operating system is a set of instructions which simplifies the development of
applications.

9. Writing a program involves the creation of a process by the operating system.

10. The kernel creates a process by assigning memory and other resources, establishing a
priority for the process (in multi-user systems), loading program code into memory, and
executing the program.

11. The program interacts with the user and devices performing its intended function.

Text 3. Microsoft Windows

Microsoft Windows is a family of proprietary operating systems that originated as an add-on
to the older MS-DOS operating system for the IBM PC. Modern versions are based on the
newer Windows NT kernel that was originally intended for OS/2. Windows runs on x86, x86-
64 and Itanium processors. Earlier versions also ran on the DEC Alpha, MIPS, Fairchild (later
Intergraph) Clipper and PowerPC architectures (some work was done to port it to the SPARC
architecture). As of June 2008, Microsoft Windows holds a large amount of the worldwide
desktop market share. Windows is also used on servers, supporting applications such as web
servers and database servers. In recent years, Microsoft has spent money on significant
marketing, research and development to demonstrate that Windows is capable of running any
enterprise application, which has resulted in consistent rice/ performance

records and significant acceptance in the enterprise market. The most widely used version of
the Microsoft Windows family is Windows XP, released on October 25, 2001. In November
2006, after more than five years of development work, Microsoft released Windows Vista, a
new version of Microsoft Windows family which contains a large number of new features and
architectural changes. Chief among these are a new user interface and visual style called
Windows Aero, a number of new security features such as User Account Control, and a few
new multimedia applications such as Windows DVD Maker. A server variant based on the
same kernel, Windows Server 2008, was released in early 2008. Windows 7 is the recent
version which has recently been developed and released.

65

Exercise 15. Say whether the statements below are true or false. Correct the false ones.
1. Modern versions of Microsoft Windows are based on Windows NT kernel that was
originally intended for OS/1.

2. In recent years, Macintosh has spent money on significant marketing, research and
development to demonstrate that Windows is not capable of running any enterprise
application.

3. The most popular version of the Microsoft Windows family is Windows XP, released on
October 15, 2001.

4. In November 2006 Microsoft released Windows Vista, a new version of Microsoft
Windows family which contains a large number of new features and architectural changes.
5. Windows 7 is currently under development.

Exercise 16. Make up questions to the italicized parts of the sentences.

1. Such applications include some small embedded systems.

2. Operating system can be categorized by technology, ownership, licensing,

working state, usage, and by many other characteristics.

3. Modern versions are based on the newer Windows NT kernel.

4. In recent years, Microsoft has spent significant money on marketing, research and
development to demonstrate that Windows is capable of running any enterprise application.
5. The most widely used version of the Microsoft Windows family is Windows XP, released
on October 25, 2001.

Exercise 17. Fill in the blanks with prepositions.

1. Microsoft Windows is a family ... proprietary operating systems that originated as an add-
on ... the older MS-DOS operating system ... the IBM PC.

2. Modern versions are based ... the newer Windows NT kernel that was originally intended
... 0S/2.

3. Windows runs ... x86, x86-64 and Itanium processors.

4. Earlier versions also ran ... the DEC Alpha, MIPS, Fairchild (later Intergraph) Clipper and
PowerPC architectures.

5. ... recent years, Microsoft has spent money ... significant marketing, research and
development to demonstrate that Windows is capable ... running any enterprise application,
which has resulted ... consistent rice/ performance records and significant acceptance ... the
enterprise market.

6. The most widely used version ... the Microsoft Windows family is Windows XP, released
... October 25, 2001.

7. ... November 2006, ... more than five years ... development work, Microsoft released
Windows Vista, a new version ... Microsoft Windows family which contains a large number
... new features and architectural changes.

66

Exercise 18. Change the following words into adjectives. Use the following suffixes -able;
-ible; -al; — ant; -ent; — ful;- ic; -ive; -ous; — .

Purpose, reason, exhaust, success, predominance, skill, power, vary, magnet, create, stick,
hierarchy, program, comprehend, observe, emerge, gloom, courage, science, compare, noise,
form, apply, event, experiment, base, collect, economy, gloom, construct, transmit, function,
redundancy, vision, resistance, depend, select, structure, efficiency.

Exercise 19. Form negative adjectives using the following prefixes un-; in-; ir-; im- ;il-;
dis-; non-.

Reasonable, relevant, satisfied, authorized, complete, fortunate, regular, possible, countable,
flammable, respectful, forgettable, direct, perfect, reliable, sensitive, legal, existent, equal,
responsible, patient, stable, rational, loyal, honest, restrictive, intentional, decent, proper,
skilled, capable, legitimate, metallic, productive, correct, logical.

Exercise 20. Give the comparative and the superlative degree of the following adjectives.
Fast, large, intelligent, convenient, complex, simple, small, good, little, much, narrow, long,
bad, far, busy, important, regular, reliable, efficient.

Exercise 21. Decide whether the italicized words are adjectives or adverbs. Translate the
sentences.

1. Computer hardware has undergone significant improvements over its history.

2. Software security practices should contain significantly fewer exploitable weaknesses.

3. Malware is a general term used by computer professionals to mean various annoying
software.

4. For handheld and desktop computers the user interface is generally considered a part of
the operating system.

5. A typical computer includes hardware and software.

6. A database consists of an organized collection of data for one or more uses, typically in
digital form.

7. The professor delivered more lectures than his colleague.

8. Little attention to documentation and large focus on effective communication will help
produce desired project results.

9. The software should be designed to guard against both likely and unlikely events. 10.
Students would study better if they had better equipment in the classrooms.

Exercise 22. Choose the right word from those in brackets. Translate the sentences.

1. The software construction is (close, closely) linked to the software configuration
management.

2. Multi-user operating systems allow many (different, differently) users to take advantage of
the computer resources (simultaneous, simultaneously).

3. (Fortunate, fortunately), such largescale methods are not the only kind available for
modelling software.

67

4. Microsoft Windows has a (significant, significantly) majority of market share in the desktop
and notebook computer markets, while servers (general, generally) use Linux or other Unix-
like systems.

5. A good operating system helps in loading of programs and data from (external, externally)
sources into the (internal, internally) memory.

6. A highlevel design does not (necessary, necessarily) represent the architecture of the
software.

7. Antivirus software may include the ability to (periodic, periodically) receive virus
definition updates in order to maintain the software effectiveness.

8. (Internal, internally) architecture is concerned with cost, performance, scalability and other
operational matters.

9. A management information system generates information (accurate, accurately) and
(regular, regularly).

10. Passive matrix displays contain a grid of (horizontal, horizontally) and (vertical,
vertically) wires with an LCD element at each intersection.

11. Hypermedia can be considered one (particular, particularly) multimedia application.

12. (Common, commonly) methods of data masking include: encryption, decryption,
masking and substitution.

Exercise 23. Translate the word combinations below into Ukrainian.

To be based on his experience in the MULTICS project; a large, complex family of inter-
related operating systems; to resemble the original UNIX; to refer to a large set of operating
systems; a diverse group of; a trademark of The Open Group; to conform to standards; a wide
variety of machine architectures; for serves as well as for workstations; in academic and
engineering environments; market share statistics; to make usage under-represented; to
acquire multiple OS; to be applied to; to be originally created for.

Text 4. UNIX and UNIX-like Operating Systems
Ken Thompson wrote B, which he used to write UNIX, based on his experience in the
MULTICS project. B was replaced by C, and UNIX developed into a large, complex family
of interrelated operating systems which have been influential in every modern operating
system. The UNIX-like family is a diverse group of operating systems, with several major
sub-categories including System V, BSD, and Linux. The name “UNIX” is a trademark of
The Open Group which licenses it for use with any operating system that has been shown to
conform to their standards. “UNIX-like” is commonly used to refer to a large set of operating
systems which resemble the original UNIX. UNIX-like systems run on a wide variety of
machine architectures. They are heavily used for servers in business, as well as for
workstations in academic and engineering environments. Free software UNIX versions, such
as GNU, Linux and BSD, are popular in these areas. Market share statistics for freely available
operating systems is usually inaccurate since most free operating systems are not purchased,
making usage under-represented. On the other hand, market share statistics based on total
downloads of free operating systems is often inflated, as there is no economic disincentive to
acquire multiple operating systems so users can download multiple systems, test them, and
68

decide which they like best. Some UNIX versions like HP’s HP-UX and IBM’s AIX are
designed to run only on that vendor’s hardware. Others, such as Solaris, can run on multiple
types of hardware, including x86 servers and PCs. Apple’s Mac OS X, a hybrid kernel-based
BSD version derived from NEXTSTEP, Mach, and FreeBSD, has replaced Apple’s earlier
(non-UNIX) Mac OS. UNIX interoperability was introduced by establishing the POSIX
standard. The POSIX standard can be applied to any operating system, although it was
originally created for various UNIX versions.

Exercise 24. Find in text 4 the English for:

rpyna pi3HHX OIepaliiHUX CHUCTEM; B3a€MOIIOB’SI3aH1 OMEpalliiiHi CUCTEMHU; BIAMOBIIATH
CTaHJapTaM; aKaJeMIYHE Ta TEXHIYHE CEPEOBHIILEC; MUTOMA Bara Ha pUHKY; OyTH HETOYHUM;
€KOHOMIYHI TEpEelIKOIN;, KyNMyBaTH PI3HOMAHITHI ONEpaliifHi CUCTEMHU; HarajayBaTH
Buxigaui UNIX.

Exercise 25. Complete the sentences choosing the proper word combinations. Translate

them.

1. Unix developed into a large, complex family of interrelated operating

systems which have been influential in

a) every complicated operating system

b) every modern operating system

C) every expensive operating system

2. The name “UNIX" is a trademark of

a) the institution for protection of the environment

b) the Closed Group

c) the Open Group

3. “UNIX-like” is commonly used to refer to

a) a large set of operating systems

b) a large set of applications

c) a large set of interfaces

4. UNIX-like systems run on a wide variety of

a) machine architectures

b) machinery

¢) machine exhibitions

5. Market share statistics for freely available operating systems is

a) usually inaccurate

b) inaccurate to some extent

C) quite inaccurate

6. There is no economic disincentive to acquire multiple operating systems

SO uSers can

a) test multiple applications and start operation

b) download multiple systems, test them, and decide which they like best

c) check multiple systems, and decide which of them they can sell

7. Some UNIX variants like HP’s HP-UX and IBM’s AIX are designed
69

torun only

a) on hardware or software

b) on that vendor’s software

c¢) on that vendor’s hardware

8. Others, such as Solaris, can run on multiple types of hardware, including

a) interface and PCs

b) x86 servers and PCs

c) servers and OS

9. UNIX interoperability was introduced by
a) establishing the POSIX standard

b) acquiring the POSIX versions

¢) granting a license to the POSIX standard
10. The POSIX standard can be applied to
a) any operating system

b) Mac OS

c) HP’s HP-UX and IBM’s AIX

Exercise 26. Put some key questions on text 4.

Exercise 27. Write out all Non-Finite forms of the verbs from text 4. State their forms and
functions.

Exercise 28. Translate the word combinations below into Ukrainian.

A line of proprietary, graphical operating systems; all currently shipped Macintosh
computers; the successor to; to be built on the technology; to be first released; a desktop-
oriented version; to be usually referred to; the server edition; to be architecturally identical to;
its desktop counterpart; to include work group management and administration software tools;
to provide simplified access to; a mail transfer agent; a domain name server.

Text 5. Mac OS X
Mac OS X is a line of proprietary, graphical operating systems developed, marketed, and sold
by Apple Inc. loaded on all currently shipped Macintosh computers. Mac OS X is the
successor to the original Mac OS, which had been Apple’s primary operating system since
1984. Unlike its predecessor, Mac OS X is a UNIX operating system built on technology that
had been developed at NeXT through the second half of
the 1980s and up until Apple purchased the company in early 1997. The operating system was
first released in 1999 as Mac OS X Server 1.0, with a desktop-oriented version Mac OS X
v10.0 following in March 2001. Since then, five more distinct “end-user” and “server”
editions of Mac OS X have been released, the most recent being Mac OS X v10.5, which was
first made available in October 2007. Releases
of Mac OS X are named after big cats; Mac OS X v10.5 is usually referred to by Apple and
users as “Leopard”. The server edition, Mac OS X Server, is architecturally identical to its

70

desktop counterpart but usually runs on Apple’s line of Macintosh server hardware. Mac OS
X Server includes work group management

and administration software tools that provide simplified access to key network services,
including a mail transfer agent, a Samba server, an LDAP server, a domain name server, and
others.

Exercise 29. Compose five key questions of different kinds (general, special, alternative,
disjunctive and subject) on text 5.

Exercise 30. Say whether the statements below are true or false. Correct the false ones.
1. Mac OS has a long history since it has come to the modern word of computer technologies.
2. Mac OS X is a line of proprietary, graphical operating systems developed, marketed, and
sold by Cherry Inc., the latest of which is pre-loaded on all currently shipped Macintosh
computers.

3. Mac OS X is a UNIX operating system built on technology that had been developed at
NeXT through the second half of the 1980s and up until Apple purchased the company in
1997,

4. The operating system was first released in 1999 as Mac OS X Server 1.0, with a desktop-
oriented version (Mac OS X v10.0) following in March 2001.

5. The server edition, Mac OS X Server, is identical to its business counterpart but usually
runs on Apple’s line of Macintosh server hardware.

6. Mac OS X Server includes work group management and administration hardware tools that
provide simplified access to key network services.

Exercise 31. Compose a dialogue on “Mac OS X”, using the word combinations given
below. Mind the grammar form.

A real-time operating system, to include some small embedded systems, to be categorized by
a technology, a large amount of the worldwide desktop market share, in the enterprise market,
after more than five years of development work, to contain a large number of new features
and architectural changes.

Exercise 32. Find some additional information and speak on:

1. The difference between system software and application software.

2. Graphical User Interface.

3. The most popular operating systems and the difference between them.
4. Why is Windows so popular?

71

UNIT 5. SOFTWARE ARCHITECTURE

7
3

P
_

ARCHITECTURE

Translate and study the basic vocabulary.

aggregate

composition

decompose

decompositional

eliminate

emerge

global control structure

gross-level component

interface point

latency

maintainability

mapping

partitioning

performance

platform independence

refinable

scaling

specify

synchronization

throughput

typed object

72

Exercise 1. Write derivatives of the words below and explain their meanings.

Model: vary — variant — variety — various — variously Vary, develop, communicate, assign,
maintain, inform, represent, function, part, depend, compose, connect, perform, explicit,
define, exist, configure.

Exercise 2. Give Ukrainian equivalents for the following word combinations.

Means of communication between modules; representation of shared information; to go
beyond the algorithms and data structures, to emerge as a new kind of problem; assignment
of functionality to design elements; scaling and performance; partitioning strategy; discrete,
nonoverlapping parts; a set of well-formedness constraints that must be satisfied by any
architecture; to be decomposed, aggregated, or eliminated

in a concrete architecture; key design issues; life-cycle issues such as maintainability, extent
of reuse, and platform independence.

Text 1. Software Architecture Strategies and Concepts
Software architecture is the study of the large-scale structure and performance of software
systems. Important aspects of a system’s architecture include the division of functions among
system modules, the means of communication between modules, and the representation of
shared information.
As the size and complexity of software systems increase, the design problem goes beyond the
algorithms and data structures of the computation: designing and specifying the overall system
structure emerges as a new kind of problem. Structural issues include gross organization and
global control structure; protocols for communication, synchronization, and data access;
assignment of functionality to design elements; composition of design elements; scaling and
performance; and selection among design alternatives. This is the software architecture level
of design.
The architecture consists of (a) a partitioning strategy and (b) a coordination strategy. The
partitioning strategy leads to dividing the entire system in discrete, non-overlapping parts or
components. The coordination strategy leads to explicitly defined interfaces between those
parts. Software architecture is represented using the following concepts:
1. Component: An object with independent existence, e.g., a module, process, procedure, or
variable.
2. Interface: A typed object that is a logical point of interaction between a component and its
environment.
3. Connector: A typed object relating interface points, components, or both.

4. Configuration: A collection of constraints that wire objects into a specific architecture.
73

5. Mapping: A relation between the vocabularies and the formulas of an abstract and a
concrete architecture. The formula mapping is required because the two architectures can be
written in different styles.

6. Architectural style: A style consists of a vocabulary of design elements, a set of well-
formedness* constraints that must be satisfied by any architecture written in the style, and a
semantic interpretation of the connectors.

Components, interfaces, and connectors are treated as first-class objects- i.e., they have a
name and they are refinable. Abstract architectural objects can be decomposed, aggregated,
or eliminated in a concrete architecture. The semantics of components is not considered part
of architecture, but the semantics of connectors is.

Software architecture is an important level of description for software systems. At this level
of abstraction key design issues include gross-level decompositional components, protocols
of interaction between those components, global system properties (such as throughput and
latency), and life-cycle issues (such as maintainability, extent of reuse, and platform
independence).

Exercise 3. Find in text 1 the English for:

JOCIIJDKEHHST BEJIMKOMACIITA0HOI CTPYKTYpU Ta (PYHKI[IOHYBAHHS MPOTrPAMHUX CHUCTEM;
po3nOIi (PYHKIIIH MK CHCTEeMHUMH MOJYJISIMHU; OOCST Ta CKJIAJHICTh MPOTPAMHUX CUCTEM;
MPOCKTYBaHHSI Ta JeTali3allis 3arajlbHOi CTPYKTYPH CHCTEMH; HOBHM THIT 3aBIaHHS;
opranizaiis Ha Well-formedness — ¢popmanbHa MpaBUIBHICTD

MaKpOpiBHI Ta CTPYKTypa TJI00aTbHOTO KEePYBaHHS; MPOTOKOIHU 3B’S3KY, CHHXPOHI3AIl] Ta
JOCTYIy /10 JAaHUX; CKJaJ CTPYKTYPHHX KOMIIOHEHTIB; BUOIp MK BaplaHTaMH HPOEKTIB;
CTpaTerii po3noAuly Ta KOOPJAWHYBaHHS;, PO3MOJLI CHCTEMH Ha JHUCKPETHI YacTHUHHU abo
€JIEMEHTH, 1110 HE TNEPeTHHAIOThCA;, YITKO BHU3HauYeHl 1HTepdeiicu MK YacTHUHAMU,
HE3aJICXKHUIN 00’ €KT; MOIYJIb, MPOLIEC, Mpolieypa, a00 3MiHHA; JIOT1YHA CYTHICTh B3a€EMOIT
MIXK €JIEMEHTOM Ta MOro CepeoBHINEM; CYKYITHICTh OOMEXKEHb, 10 MOB’SI3YIOTh 00’ €KTH B
NEBHY apXITEKTypy; aOCTpakTHa Ta KOHKpPETHA apXITEKTypH; BiIOOpakeHHs (OpMyI;
dbopmanbHI 0OMEXKEHHS; KJIIOYOB1 MTUTaHHS MPOSKTYBAHHS; TIEKOMIIO3HUITIHI KOMITOHEHTH Ha
MaKpOpiBHi; TJI00aIbHI BJIACTUBOCTI CUCTEMHU; IIPOMYCKHA 31aTHICTD 1 YaCc O4iKyBaHHSI.

Exercise 4. Say whether the statements below are true or false. Correct the false ones.
1. Software architecture is the study of the small-scale and large-scale structures and
performance of software systems.

74

2. Important aspects of a system’s architecture include the division of functions among system
modules, the means of communication between modules, and the representation of shared
information.

3. The size and complexity of software systems decrease.

4. The design problem goes beyond the algorithms and data structures of the computation:
designing and specifying the overall system structure emerges as a new kind of problem.

5. The architecture consists of (a) a partitioning strategy and (b) a communication
strategy.

6. The partitioning strategy leads to dividing the entire system in discrete, overlapping parts
or components.

7. The coordination strategy leads to explicitly defined interfaces between those parts.
8. Interfase is a typed object that is a logical point of interaction between components.

9. The formula mapping is required because the two architectures can be written in similar
styles.

10. An architectural style consists of a vocabulary of design elements, a set of well-
formedness constraints that must be satisfied by any architecture written in the style, and a
semantic interpretation of the connectors.

11. Components, interfaces, and connectors are treated as first-class objects — i.e., they have
a name and they are nonrefinable.

12. Abstract architectural objects can be decomposed, aggregated, or eliminated in a concrete
architecture.

13. The semantics of components is considered part of architecture, as well as the
semantics of connectors.

Exercise 5. Form all possible word combinations with the words from both columns.
Translate them.

1) to include a) a new kind of problem

2) to write b) a partitioning strategy

3) to go beyond c¢) formula mapping

4) to consist of d) explicitly defined interfaces

5) to emerge as e) division of functions

6) to lead to f) part of architecture

7) to require g) the algorithms and data structures
8) to be treated as h) constraints

75

9) to be considered 1) in different styles
10) to satisfy J) first-class objects

Exercise 6. Fill in the blanks with prepositions in, to, between, among, beyond, of, as, by,
at, for where necessary.

1. Software architecture is the study ... the large-scale structure and performance ... software
systems.

2. Important aspects ... a system’s architecture include the division ... functions ... system
modules, the means ... communication ... modules, and the representation ... shared
information.

3. As the size and complexity ... software systems increase, the design problem goes ... the
algorithms and data structures ... the computation: designing and specifying the overall
system structure emerges ... a new kind ... problem.

4. Structural issues include gross organization and global control structure; protocols ...
communication, synchronization, and data access; assignment ... functionality ... design
elements; composition ... design elements; scaling and performance; and selection ... design
alternatives.

5. The partitioning strategy leads ...dividing the entire system ... discrete parts.

6. Interface is a typed object that is a logical point ... interaction ... a component and its
environment.

7. Architectural style consists ... a vocabulary ... design elements, a set ... well-formedness
constraints that must be satisfied ... any architecture written ... the style, and a semantic
interpretation ... the connectors.

8. Software architecture is an important level ... description ... software systems.

9. ... the level ... abstraction key design issues include gross-level decompositional
components and protocols ... interaction ... those components.

Exercise 7. Fill in the blanks with proper terms (configuration, component, mapping,
interface, coordination strategy, connector, partitioning strategy, software architecture)
to complete the sentences.

1. Is a typed object relating interface points, components, or both.

2. Is a strategy that leads to dividing the entire system in discrete, non-
overlapping parts or components.

3. IS an object with independent existence, e.g., a module, process,

procedure, or variable.

76

4. Is a collection of constraints that wire objects into a specific architecture.

5. Is a relation between the vocabularies and the formulas of an abstract

and a concrete architecture.

6. is the study of the largescale structure and performance of software
systems.

7. IS a strategy that leads to explicitly defined interfaces between those parts.
8. Is a typed object that is a logical point of interaction between a

component and its environment.

Exercise 8. Answer the questions on text 1.
1. What is software architecture?
2. What do important aspects of a system’s architecture include?

3. Why does the design problem go beyond the algorithms and data structures of the
computation?

4. What emerges as a new kind of problem?

5. What do structural issues include?

6. What strategies does the architecture consist of? What do they differ in?
7. What concepts is software architecture represented by?

8. What is a component/interface/ connector?

9. What is configuration/ mapping/an architectural style?

10. What kind of semantics is considered to be a part of architecture?

11. What do the key design issues of software

architecture include?

Exercise 9. Put all possible questions to the sentences below.

1. Important aspects of a system’s architecture include the division of functions among system
modules, the means of communication between modules, and the representation of shared
information.

2. As the size and complexity of software systems increase, the design problem goes
beyond the algorithms and data structures of the computation.
3. Structural issues include gross organization and global control structure; protocols

for communication, synchronization, and data access; assignment of functionality to design
elements; composition of design elements; scaling and performance; and selection among
design alternatives.

77

4. The architecture consists of a partitioning strategy and a coordination strategy.

5. The partitioning strategy leads to dividing the entire system in discrete, non-overlapping
parts or components.

5. Software architecture is represented using the following concepts: a component, an
interface, a connector, a configuration, mapping, an architectural style.

6. Components, interfaces, and connectors are treated as first-class objects.

7. Abstract architectural objects can be decomposed, aggregated, or eliminated in a concrete
architecture.

8. The semantics of components is not considered part of architecture, but the semantics of
connectors is.

Exercise 10. Translate into English.

1. ApxiTekrypa mnporpamHOro 3abe3nedeHHs — I JOCIKCHHS BeIWKOMacIITaOHOI
CTPYKTYPH Ta (PYHKI[IOHYBaHHSI IPOTrPAMHHUX CHUCTEM.

2. BaxxniuBi acleKTH apXiTEKTypH CUCTEMH BKJIIOYAIOTh PO3NOALT PYHKIINA MI>K CHCTEMHUMU
MOIYJISIMHU, 3ac00M 3B 3Ky MDK MOJYJISAMH Ta CIOCIO TPEICTaBIICHHS PO3MOAUICHOT
iH(dopMarii.

3. V 3B’43Ky 31 3pOCTaHHSM O0OCSATy Ta CKJIAIHOCTI MPOTPAMHUX CHUCTEM 3aBJIaHHS
IPOEKTYBAHHS BHUXOJUTh 3a MEXI AQJIrOPUTMIB Ta CTPYKTYp JaHUX OOYMCIEHHS —
MPOEKTYBAHHS Ta JIeTaji3allisl 3arajJbHO1 CTPYKTYPH CUCTEMHU TIOCTAE SIK HOBHI THUIT 3aBJIaHHS.
4. ApXITeKTYpHHH pIBEHb MNPOEKTYBaHHS TPOTPAMHOrO 3a0E3MEUCHHs BKJIIOYA€ TakKi
CTPYKTYpPHI IUTaHHS, SIK OpTraHi3alisd Ha MAaKpOPIBHI Ta CTPYKTYpa ri100aqbHOI0 KEpyBaHHS;
MIPOTOKOJIM 3B’A3KY, CHHXPOHI3AIl] Ta IOCTYIy 0 JaHUX; pO3MOALUT (YyHKIIOHATBHOCTI MIXK
CTPYKTYPHUMH KOMIIOHEHTaMH Ta iX CKJaja; MaciuTaOyBaHHS Ta (DYHKI[IOHYBaHHS; BUOIp
BapiaHTy MPOEKTY.

5. ApXiTeKTypa CKIaJa€eThCs 31 CTPATET1i PO3IMOALTY Ta KOOPAUHYBAHHS.

6. B apxitekTypi nporpamMHoro 3a0e3nedeHHs BUKOPUCTOBYIOTh TaKi MOHSATTS: KOMIIOHEHT,
1HTEpdeiic, 3’€JHyBAIbHUI €1€MEHT, KOH(DIrypallisi, BiIOOpaXKe€HHs Ta apXITEKTYPHUIN CTUJIb.
7. KOMIOHEHT — 1ie He3aJleXHUM 00’€KT, HAmpHKIad, MOIYJb, MPOLEC, Mpoleaypa, ado
sminHa. 8. [HTEepdelic — 1e TUImi3oBaHui 00’ €KT, IO € IMYHKTOM 31HCHEHHS B3aEMOJIIT MiX
KOMITOHEHTOM Ta MOT0 CEPEIOBUILEM.

9. 3’enHyBaJibHUN €JIEMEHT € THUIII30BAHUM OO0 €KTOM, SKWUW TMOB’SI3yE€ MIXK COOOIO
iHTEepQeiicHI By3u, KOMIIOHEHTH, a00 i Te, i apyTe.

10. Koudirypariss — 1e CyKymHICTh OOMEXKEHb, IO TOB’SI3YIOTb OO’€KTH B TIEBHY
apXITEKTypy.

78

11. BinobpaxeHHs BiITBOPIOE BiTHOIIEHHS MK CIIOBHUKaMHU Ta OpMyJIaMH aOCTPaKTHOI Ta
KOHKPETHOT apXITEKTYp.

12. ApXITeKTYpHUIN CTUIIb CKJIAIAEThCS 31 CIOBHHMKA CTPYKTYPHUX KOMIIOHEHTIB, HU3KHU
(dopManbHUX OOMEXKEHb, SKUM Ma€ BIANOBIAATH OyAb-fKa apXITEKTypa CEMaHTHUYHOI
1HTepIpeTalii 3’ €IHyBaIbHUX €JIEMEHTIB, HallMCaHa B ICBHOMY CTHJII.

13. KoMmnoneHnTtu, iHTepdeiicu Ta 3’€IHyBaIbHI €IeMEHTH PO3TJISIA0Th K 00’ €KTH MEPIIOro
KJ1acy, TOOTO BOHU MarOTh IMEHA 1 MIJJISATAI0Th AeTali3allii.

14. AOGcTpakTHiI apXiTEeKTypHI O0’€KTH MOXHA pO3KJIajaTH, 00’€IHYBaTH Ta BUAAISATH B
KOHKPETHIM apXiTeKTypi.

15. ApxiTekTypa MNpOrpaMHOro 3a0e3Me4YeHHs € BAKIMBUM PIBHEM OIKCY MPOTPaMHHUX
CUCTEM.

16. Ha upomy piBHI aOcTparyBaHHs KJIIOYOBI NUTaHHS MPOEKTYBaHHS BKIIIOYAIOTh
MaKpOpIBHEBI JICKOMIO3HUIIIMHI ~ KOMIIOHEHTH, TPOTOKOJIX B3a€EMOMII MK IIMMH
KOMIIOHEHTaMH, TJI00albHI BJIACTUBOCTI CUCTEMHM (Taki, SIK: MPOMYCKHA 3JaTHICTh 1 4ac
OYIKYBaHHS) Ta MHUTAHHS JKUTTEBOrO LUKIY (Taki, SK: 3pYYHICTh CYMPOBOAY, YACTOTHICThH
MMOBTOPHOTO BUKOPHUCTAHHS 1 HE3aJIEKHICTh Bij TIATHOPMH).

Exercise 11. Write a summary of the text “Software Architecture”.

Text 2. Essential Characteristics of Software Architecture
Software architecture usually refers to some combination of structural views of a system, with
each view being a legitimate abstraction of the system with respect to certain criteria, that
facilitate a particular type of planning or usage.

» Software architecture represents the structure of the software. This includes the
structural arrangements of software components, and various static and dynamic
interrelationships between these components.

» Software architecture is expressed using certain views, each of
which serves a specific purpose. Each view is a specific abstraction of
the architecture, for a specific purpose.

» Software architecture includes the principles behind design and evolution of the
software. The following are some of the essential characteristics of architecture.

» Software architecture should represent a high-level view of the system revealing the
structure, but hiding all implementation details. Specifically, it should reveal attributes
such as responsibilities (of the constituents of the architecture), distribution, and
deployment.

79

Architecture should realize all the use case scenarios. While the use case model serves
to record the functional requirements as seen by various actors, the architecture should
enable the stakeholders of the software to walk through the scenarios of each use case.
This guarantees that the structure as represented by the architecture meets the functional
requirements.

It should present other systemic views to all the stakeholders of the software. Examples
are — a component view for the development team, a network-centric deployment view
for the network and hardware team, and a distribution-centric deployment view for the
installation team etc. However, how does the architecture look like? Some of the
common representations of software architecture are as follows. As discussed below,
none of these representations is complete.

High-level design: A simplistic approach is to represent the architecture as a concise
view of a high-level design of the software. However, design is an implementer’s view
of the software — a view that reveals how to arrive at the structure of the software. So a
high-level design does not necessarily represent the architecture of the software.
Deployment: This is the most common form of representations of architecture. In this
view, the software is described in terms of how it is deployed across various platforms,
and how these parts communicate with each other. Note that deployment view is only
one of the possible views of architecture, and does not necessarily reveal the structure
of the software. Also note that during the life-cycle of a software, the deployment could
change with no or minimal changes to the structure of the software. This is one of the
reasons that is driving distributed component based technologies.

Generic Technology Architectures: In this form, software architecture is represented
as a two-tier, three-tier or a multi-tier system. Note that architectures such as these,
distributed (and layered) architectures such as COM or CORBA, or component based
architectures such as MTS or EJB are generic and do not address the needs of the
domain in which the software is to operate and evolve. However, these technology
architectures provide the basis for developing domain specific application
architectures. The architecture should at least present the following views of the
software (in the order of the importance).

Logical or Conceptual View: This view of the software represents various abstractions
of the system and accounts for various use case scenarios. Using this view, one should
be able to walk through these abstractions to realize the use case scenarios. In the case
of distributed applications, some of these abstractions may directly map to distributed
components.

Deployment View: As pointed earlier, this view depicts how various parts of the
software are deployed.

80

In both views, it is necessary to depict responsibilities of each of the parts of the architecture,
static and/or dynamic dependencies between them, the nature of communication between the
parts, etc. Additional views such as development views (to show how the application will be
developed) and process views (to reveal threading, concurrency etc.) may also be considered
If required. In general, software architecture is considered important as it serves as a means
of mutual communication between the stakeholders of the software, allows to capture early
design decisions, and lets the architecture be reused for similar systems in the same domain.

Exercise 12. Answer the questions on text 2.

. What does software architecture usually refer to?

. What does the structure of the software include?

. How is software architecture expressed?

. What are some of the essential characteristics of software architecture?

. What are examples of systemic views presented to all stakeholders of the software?
. What does a high-level design represent?

. What does a deployment view show?

. How is software architecture represented in generic technology architectures?
. What are examples of generic technology architectures?

10. What does a logical or conceptual view present?

11. What is it necessary to depict in logical and deployment views?

12. What additional views may also be considered?

13. Why is software architecture considered important?

© 00 N O O A W DN P

Exercise 13. Choose the right form of the verbs in brackets. Mind the sequence of tenses.
1. He says, “I ... just ... a class of problems!” (has solved; have solved; had solved).
2. They told us, “We ... already ...a high-level prototype”. (have built; had built; has built).

3. The students say, “We ...just ...proven patterns to solve problems”. (had used; were used;
have used).

4. He said, “I the system in compliance with the plan by next month”. (will have
developed; would have developed).
5. They announce, “We our decisions to developers”. (have disseminated; had

disseminated; will be disseminated).

6. Hetold us, “I structural patterns by evening”. (would have identified; will
have identified).

81

7. She said, “Application developers ... already ...available capabilities”. (has used; had used;
have used).

8. We...... that he ... just ... the problems to be solved. (find out/have identified;

found out/had identified; found out/has identified).

9. He asked me what me facilitate the standardization of services. (has helped;

had helped; will help).

10. I didn’t know you your assignment. (have completed; had completed; has
completed).

Exercise 14. Use the proper tense form and voice of the verbs in brackets.

1. The complexity of software systems (increase) significantly recently.

2. A new kind of problem (appear) before the designing the overall system structure.
3. By next year two architectures (write) in different styles.

4. Abstract architectural objects just (decompose).

5. He already (represent) the architecture as a concise view of a highlevel design of the
software.

6. The deployment view just (reveal) the structure of the software.

7. | (finish) presenting the view of the software by next week.

8. The evolution of software (review) before his arrival.

9. By next week he (capture) design decisions.

10. You already (determine) the components to build the system?

11. He just (realize) the importance of past experiences for software architecture.
12. How long you (solve) this technical problem?

13. He (gain) enough breadth and depth in the relevant domain long before I did it.
14. My friend (not have) the capability to envision a software system before it was developed.
15. I hope you already (understand) the importance of software architects.

16. You (get) enough development and debugging skills by next interview?

17. Unfortunately many projects already (make) mistake of trying to impose a single partition
in multiple component domains.

18. His irresponsible actions (lead) to problems in development before we had time to correct
the mistakes.

19. The implementation of a complex functional feature (split) between two groups by next
meeting.
20. Yesterday | knew that the performance (compromise).

82

21
22

. Since recently we (use) the resulting models to plan the subsequent development activities.
. You (determine) the purpose and specifications of software before you started

developing a plan for a solution?

23.
24,
25,
26.
217,
28.
29.
30.

Software developers (design) a plan by next decade?

He (not analyze) yet the software requirements.

It just (let) us produce various models.

Software designers (evaluate) these models since last month.

He said that various alternative solutions and trade-offs (examine) before.

More sophisticated methods (apply) by next year.

We knew that a set of fundamental design concepts (evolve).

I’m sure that a good software architecture already (yield) a good return on investment.

Exercise 15. Put the verbs in brackets into an appropriate form of Perfect or Indefinite

Tense.

1. Last time he (divide) the program structure both horizontally and vertically.
2. He (work) on designing modules last week.

3. He never (consider) many aspects in the design.

4. When you (manage) to maintain the software effectiveness?

5. Since last trial the components (test).

6. He already (design) the software with a resilience to low memory conditions.
7. You ever (achieve) these goals?

8. When you (choose) the default values for the parameters?

9. You already (enumerate) all design criteria?

10
11

12.
13.
14.
15.
16.
17.
18.
19.
20.

. Last week he (work) at multiple levels of abstraction.

.Today I (know) a lot about Human Machine Interface.

A month ago he (buy) a new backlit display.

He (forget) to ask about data transfer rate when he was in the office.
We (study) local area networks since last month.

This week they (install) a full keypad.

When you (learn) about operating temperature?

I don’t think he ever (hear) about Ethernet.

You already (design) the program?

When you last (change) your display?

| (learn) about this feature yesterday.
83

Exercise 16. Change the sentences into indirect speech.
1.The teacher asked, “Did you define the problem?”
2. He enquired,”Will you have finished your report by evening?
. The professor told us, “We have already performed the major part of our work”.

9

. My friend said to me, “I have just separated the interface from implementation”.

. They said to us, “We have been trying to make it work for a long time”.

. He said, “I have implemented the design before you did it.”

3

4

5

6. I asked my groupmate, “Have you already found your mistake?”
7

8. She asked, “How long have you been searching for the decision?”
9

. The student said to the teacher,” I will have sent my report by Friday.”
10. He asked, “Did they understand their tasks last time?”

Exercise 17. Translate the word combinations below into Ukrainian.

To give an edge; envisioning a solution; to impart in you the ability to choose among various
solutions available; to anticipate and solve technical problems; to gain enough breadth and
depth in the relevant domain and technologies; to convince the people above and below them
in the hierarchies; to be a vogue in the Software Development industry; to equate one’s
success to that of the customer’s; to be a natural progression.

Exercise 17. Read, translate and entitle text 3.
Text 3

Software architecture is the blueprint of a software system. It provides an overview of the
composition and functionality of the given software system. Just like a structural architect, a
software architect needs to analyze the requirements, determine components that should be
used to build the system, and support the project by guiding and solving problems all along
the execution cycle. Architecting software is like planning for war. Past experiences are very
useful here. Strategizing gives you an edge. Understanding of the domain provides you with
capability to analyze the requirements and envisioning a solution. Exposure to various tools
and technologies imparts in you the ability to choose among the various solutions available,
and anticipate and solve technical problems. A person becomes a software architect when he
has gained enough breadth and depth in the relevant domain and technologies, and has the
capability to envision a software system before it is developed. Architects are needed for most
of the Software Projects, more as the navigator for a sailing ship. Architects design the
software system, guide the development team in implementing the system, and
anticipate/diagnose problems, find/develop solutions to those problems. These days, most of

84

the organizations are realizing the importance of software architects, because with an architect
you are no longer shooting in the dark.

Architects need to have good written/spoken communication since they have to convince the
people above and below them in the hierarchies about their ideas effectively, strong
development and debugging skills, domain and technology proficiency and appreciation, and
customer’s point of view can be very useful for an architect. Due to the maturity of Software
Development practice, there are several predefined solutions available for certain problems
called Patterns. Design and Architecture patterns are a vogue in the Software Development
industry. They are the solutions for a recurring class of problems. Most of the time, they are
the best possible solutions to those problems. Knowledge of patterns in their
domain/technology areas is an added advantage for an architect. For a person, who is excited
by new tools, technologies and domains, who is on the lookout for challenging problems to
solve, who is capable of thought leadership, who equates his success to that of the customer’s,
the role of Software Architect is a natural progression.

Exercise 18. Find in text 3 the English for:

CTPYKTypa TPOrpaMHOi CHCTEMH; 3arajibHe YSBICHHS TpOo OynoBY 1 (YHKIIOHATBHICTH
NpOrpaMHOi CHUCTEMH; IHCTPYKTYBaHHS 1 BHPIIICHHS MPOOJIEM BIPOIOBXK YCHOTO ITUKITY
BUKOHAHHSI; PO3YMIHHS MPEAMETHOI 00J1aCTl; MOXIIMBE 3aIy4€HHS PI3HOMAHITHUX 3ac001B 1
TEXHOJIOT1/; MIIHI HaBUYKU Yy PO3pOOIll 1 HAJaroJ)KyBaHHI; BIIPaBHICTh 1 yMiHHS A00pe
po3i0paTucsa SIK y OpeaMeTHId o0JacTi, Tak 1 B TEXHIIll; 3aBASKH PO3BUHEHIN MpaKTHUII
pPO3pOOJICHHSI TIPOrpaMHOro 3a0e3MEeUeHHs; CTaHJAapTHI PpIMICHHSA; KJac 3ajad, 1o
NEpPIOJUYHO TOCTAIOTh Meped pPO3pOOHMKOM; HOBI IHCTPYMEHTH, TEXHOJOrii Ta cdepu
3aCTOCYBAHHS; INYKaTH CKIAJHUX NOpoOJIeM, M0 MOTPEOYIOTh PO3B’SI3aHHS; 3JaTHUM Ha
1HTEJIEeKTYyaJabHE JIIePCTBO.

Exercise 19. Answer the questions on text 3.

. What is software architecture?

. What does software architecture provide?

. What does a software architect need to do?

. What aspects should he consider in architecting software?
. When does a person become a software architect?

. What is architects’ job?

. What skills do architects need to have?

. What are patterns?

. For what kind of person is the role of Software Architect a natural progression?
85

© 00 N &N O A W DN -

10. Do you have any experience in architecting software? Speak to your groupmates
about it.

Exercise 20. Explain the meaning of the following words in English.

Software architecture, a blueprint, a software system, an overview, a software architect, a
problem, experience, to give an edge, a domain, to envision, an exposure, a software project,
shooting in the dark, debugging, a skill, technology proficiency, appreciation, maturity,
predefined solution, a pattern, a vogue, Software Development industry, a recurring class of
problems, to be on the lookout for, a challenging problem, a leadership, a success, a customer,
a progression.

Exercise 21. Choose verbs among the following words. Read and translate the word.

Software, include, different, internal, relation, component, architecture, necessitate, domain,
transform, exist, porting, availability, with, load, important, independent, specific,
architectural, legislate, current, along, scheme, extend, basic, create, therefore, earlier,
concerns, partition, transact.

Exercise 22. Give synonyms for the following words.

Require, basic, component, partition, complex, execution, in the end, plan, particular,
combine, user, modern, along with, significant, address, the problem, cluster, initial,
subsequently, specify, pertinent to.

Text 4. Architectural Structures

The structure of software in a component domain is created by a partition of software into
components and their composition into an integrated whole. For every system it is necessary
to determine which structures of software affect architecturally significant requirements and
to group the requirements in such a way that each group is supported primarily by independent
structures that exist in different component domains. One effective way to identify
independent (or partly independent) requirements is by different stages of software life cycle
with which they are concerned. A typical (though somewhat simplified) set of stages when
different structures of software play major roles includes write time, build time, configuration
time, upgrade time, start time, run time, and shutdown time. The most important software
structure at write time is the structure of modules. Thus write time-related requirements, such
as feature addition and evolution, porting, and diversification, are

addressed primarily by appropriate module structures that play a major role at write time.

Similarly, start time-related requirements (such as order, presence, independent operation, and
86

failure modes) are addressed primarily by appropriate executable structures — the startup or
shutdown unit or component. In addition, of course, run time-related requirements, such as
performance or availability, are addressed by the structures of objects and execution threads
— the domain of run-time software components. Many projects make the mistake of trying to
Impose a single partition

in multiple component domains, such as equating threads with objects, which are equated
with modules, which in turn are equated with files. Such an approach never succeeds fully,
and adjustments eventually must be made, but the damage of the initial intent is often hard to
repair. This invariably leads to problems in development and occasionally in final products.
In one case, implementation of a complex functional feature was split between two groups.
Two functional clusters were defined, along with the necessary interfaces. Unnecessarily, the
modules also ended up in different processes and had to interact at run time using slower
interprocess

communication mechanisms. Another example involved a system that was partitioned into a
set of distributed processes. The partition was motivated by considerations of required
parallelism, availability, and fault tolerance. This partition was subsequently used to allocate
additional functionality, which affected resource requirements and timing characteristics,
violating the original design. As a cure, non-real-time functionality was allocated to new
components. However, because the software architecture was identified with its process
structure, these components became independent processes. Consequently, the components
had complex interfaces and performance was compromised. Designing a software architecture
must start with specific architectural concerns, specify the partition in different component
domains, along with a scheme for integration and coordination of the parts, and explain how
this specific partition and the corresponding integration of

the software address the specified architectural concerns. Examples of architectural concerns
may include timeliness, capacity, availability, effective division of work, conformance to
standards, use of existing parts, or controlled propagation of change. To address these
concerns, different partitions may exist in different component domains. From the point of
view of software reuse, architecture that separates concerns pertinent to different requirement
and component domains also results in more reusable components. Therefore it is important
to recognize multiple software existence planes with the associated component domains and
independent partitions of software and their relations to different requirement domains.

Exercise 23. Put some key questions on text 4.

Exercise 24. Say whether the statements below are true or false. Correct the false ones.

87

1. A scheme of software in a component domain is created by a partition of software into
components and their composition into an integrated whole.

2. One effective way to identify independent requirements is by different stages of software
life cycle with which they are concerned.

3. A typical set of stages when different structures of software play major roles includes run
time, write time, configuration time, build time, start time, upgrade time and shutdown time.

4. The most important software structure at write time is the structure of diagrams.

5. Many projects make the mistake of trying to impose a larger partition in multiple
component domains, such as equating threads with objects.

6. Implementation of a complex functional feature was split between three groups.

7. Two functional clusters were defined, along with the necessary interfaces.

8. The modularities also ended up in different processes and had to interact at run time using
slower interprocess communication mechanisms.

9. Because the software architecture was identified with its process structure, these
components became independent processes.

10. Examples of component domains may include timeliness, capacity, availability, effective
division of work, conformance to standards, use of existing parts, or controlled propagation
of change.

11. From the point of view of software architecture, reuse that separates concerns pertinent to
different requirement and component domains also results in more reusable components.

12. It is important to recognize multiple software existence planes with the associated
component domains and independent partitions of software and their relations to integration
of the software.

Exercise 25. Form all possible word combinations with the words from both columns.
Translate them.

1) to be created by a) appropriate module structures

2) to affect b) considerations of required parallelism
3) to play c) a partition of software into components
4) to be addressed by d) functional clusters

5) to make e) major roles

6) to lead to f) complex interfaces

7. to define g) more reusable components

8. to be motivated by h) the mistake

88

9. to have 1) problems in development

10. to result in J) architecturally significant requirements

Exercise 26. Decipher the abbreviations below.
MTS, EJB,COM, CORBA, VDU, SPARC, API, CLI, Ul, USB.

Exercise 27. Compose a dialogue on “Architectural structures”.
Exercise 28. Find some additional information and speak on:
1. Architectural strategies and concepts.

2. Essential characteristics of software architecture.
3. Structure of software in a component domain.

89

UNIT 6. SOFTWARE DESIGN

= e 1 [@e=
SOFTWARE DESIGN
o

Translate and study the basic vocabulary.
software design

software solution

specification

platform-dependent (platform-specific)
software architectural design

software detailed design

Exercise 1. Choose nouns among the following words. Read and translate the word.

Precisely, define, concept, evaluate, object, subsequent, maintainability, sufficiently,
procedure, fulfill, availability, implement, text, enable, item, examine, blueprint, analyze,
integration, various, level, observable, interoperability, sophisticated, tolerance, internal, year.

Exercise 2. Give synonyms (a) and antonyms (b) for the following words:

a) software, purpose, architecture, designer, enable, consist, identify, various, precisely,
activity, blueprint, trade-off, examine, fulfil, in the end, requirement, basis;

b) hardware, advantage, platform-independent, sufficiently, sophisticated, precisely, finally,
top-level design, internal, employ, various.

Exercise 3. Write derivatives of the words below and explain their meanings.

Model: specify — specification — specifier — specific — specifically Specify, solve, process,
depend, design, require, describe, produce, develop, precise, add, sufficient, vary, implement,
maintain, operate, evaluate, available, refine, elaborate.

90

Exercise 4. Give Ukrainian equivalents for the following word combinations.

Software design; software solution; to determine the purpose and specifications of software;
to employ designers; platform-independent or platform-specific; availability of the
technology called for by the design; software requirements; to produce a description of the
software internal structure; more precisely; to enable construction; software developing; to
plan subsequent development activities; in addition to; a standard listing of software life cycle
processes; to consist of two activities; to fit between software requirements analysis and
software construction; identifying various components; to describe each component
sufficiently.

Text 1. Software Design Activities

Software design is the process of defining the architecture, components, interfaces, and other
characteristics of a system or component and planning for a software solution. After the
purpose and specifications of software are determined, software developers will design or
employ designers to develop a plan for a solution. Software design may be platform-
independent or platform-specific, depending on the availability of the technology called for
by the design. Viewed as a process, software design is the software engineering life cycle
activity in which software requirements are analyzed in order to produce a description of the
software internal structure that will serve as the basis for its construction. More precisely,
software design (the result) must describe the software architecture and the interfaces between
those components. It must also describe the components at a level of detail that enables their
construction. Software design plays an important role in developing software: it allows
software engineers to produce various models that form a kind of blueprint of the solution to
be implemented. We can analyze and evaluate these models to determine whether or not they
will allow us to fulfill the various requirements. We can also examine and evaluate various
alternative solutions and trade-offs. Finally, we can use the resulting models to plan the
subsequent development activities, in addition to using them as input and the starting point of
construction and testing.
In a standard listing of software life cycle processes software design consists of two activities
that fit between software requirements analysis and software construction:

» Software architectural design (sometimes called top-level design): describing software

top-level structure, organization and identifying various components.
» Software detailed design: describing each component sufficiently to allow for its
construction.

91

Exercise 5. Find in text 1 the English for:

MPOLIEC BU3HAYEHHS apXITEKTypH, KOMIIOHEHTIB, IHTeP(ENCIB Ta 1HIIMX XapaKTEPUCTHUK
CUCTEMH; IUIAHYBaHHS NPOTPaMHOr0 MPOAYKTY; MPHU3HAUYEHHS Ta TEXHIYHI BUMOTH [0
MPOrPaMHOro 3a0e3MeYeHHs; PO3POOHUK MPOrPAMHOr0 3a0e3MeUeHHs; OyTH HE3aJIEeKHUM YU
3aJIGKHUM Bil TWIaTGOPMU; TEXHOJOTIA, MOTPIOHA MJii TMPOEKTYBaHHS, oOleparis 3
PO3pOOJICHHS KUTTEBOI'O LUKy IPOrpaMHOro 3a0e3leyeHHs; ONUMCYBaTH KOMIIOHEHTH Ha
PIBHI JIeTai3yBaHHs, 110 CIPOILYE X NOOYA0BY; BIAINPABATH BaXIJIUBY POJib B pO3pOOIEHH]
MIPOrpaMHOro 3a0e3MeueHHs; CTPYKTypa PIIIeHHs, SKe MOTPIOHO peani3yBaTH; OIlIHIOBATHU
MOJIeNIl; 3aJI0BOJIBHSTH Pi3HI BUMOTH; aHANI3yBaTH Ta OL[IHIOBATH PI3HI BapiaHTHU PIIICHb;
CTaHJAPTHUW TEpeslik TPOIECIB IKUTTEBOIO LUKIY MPOrpamMHOro 3abe3leueHHS;
INPOEKTYBaHHS apXITEKTYpH MPOrpaMHOro 3a0e3MeueHHs; JeTalbHE IPOEKTYBAaHHS
MPOrpaMHOr0 3a0e3MeUYECHHSI.

Exercise 6. Say whether the statements below are true or false. Correct the false ones.
1. Software design is the process of defining the architecture, components, interfaces, and
other characteristics of a system or component and planning for a hardware solution.

2. After the purpose and specifications of software are determined, software architects will
design or employ designers to develop a plan for a solution.

3. Software design may be platform-independent or platform-specific, depending on the
availability of the technology called for by the design.

4. Viewed as a process, software design is the software engineering life cycle activity in which
software requirements are analyzed in order to produce a description of

the software’s internal structure that will serve as the basis for its construction.

5. More precisely, software design (the result) must describe the software construction and
the interfaces between those components.

6. Software design plays a minor role in developing software.

7. Software design allows software engineers to produce various models that form a kind of
blueprint of the solution to be implemented.

8. In a standard listing of software life cycle processes software design consists of

three activities that fit between software requirements analysis and software construction.

Exercise 7. Form all possible word combinations with the words from both columns.
Translate them.

1) to define a) a plan for a solution
2) to employ b) software requirements
3) to determine ¢) components and interfaces

92

4) to develop d) various models

5) to be e) the purpose and specifications of
software

6) to analyze f) subsequent development activities

7) to produce g) alternative solutions

8) to serve as h) designers

9) to examine 1) platform-independent

10) to plan J) the basis for construction

Exercise 8. Fill in the blanks with prepositions in, on, of, for, to, as, between, by where
necessary.

1. Software design is the process ... defining the architecture, components, interfaces, and
other characteristics ... a system or component and planning ... a software solution.

2. After the purpose and specifications ... software are determined, software developers will
design or employ designers to develop a plan ... a solution.

3. Software design may be platform-independent or platform-specific, depending ... the

availability ... the technology called the design.
4. Viewed ... a process, software design is the software engineering life cycle activity
. which software requirements are analyzed ... order to produce a description ... the

software internal structure that will serve ... the basis ... its construction.

5. Software design must also describe the components ... a level ... detail that enables their
construction.

6. Software design plays an important role ... developing software: it allows software
engineers to produce various models that form a kind ... blueprint ... the solution to be
implemented.

7. Finally, we can use the resulting models to plan the subsequent development activities, ...
addition ... using them ... input and the starting point ... construction and testing.

8. ... a standard listing ... software life cycle processes software design consists ... two
activities that fit ... software requirements analysis and software construction.

Exercise 9. Fill in the blanks with proper terms (component, software architectural
design, software development, software design, software detailed design, software
construction, interface, software architecture) to complete the sentences.

1. Is a typed object that is a logical point of interaction between
a component and its environment.
2. Is the study of the large-scale structure and performance of software

systems. Important aspects of a system’s architecture include the division of functions among
93

system modules, the means of communication between modules, and the representation of
shared information.

3. Is the process of defining the architecture, components, interfaces, and
other characteristics of a system or component and planning for a software solution.

4. Is the term that refers to the detailed creation of working, meaningful
software through a combination of coding, verification, unit testing, integration testing, and
debugging.

5. is describing software’s top-level structure, organization and identifying
various components.

6. Is an object with independent existence, e.g., a module, process, procedure,
or variable.

7. Is the process of writing and maintaining the source code that may include

research, prototyping, modification, reuse, reengineering, maintenance, or any other activities
that result in software products.
8. Is describing each component sufficiently to allow for its construction.

Exercise 10. Answer the questions on text 1.

1. What is software design?

2. What may software design depend on?

3. What kind of activity is software design?

4. What must software design describe?

5. What is the role of software design in developing software? 6. What can software models
be used for?

7. What activities does software design consist of in a standard listing of software life cycle
processes?

8. What is the difference between these activities?

9. Can you explain the difference between software architectural design and software detailed
design?

Exercise 11. Put all possible questions to the sentences below.

1. After the purpose and specifications of software are determined, software developers will
design or employ designers to develop a plan for a solution.

2. Software design may be platform-independent or platform-specific, depending on the
availability of the technology called for by the design.

3. Viewed as a process, software design is the software engineering life cycle activity in which
software requirements are analyzed in order to produce a description of the software’s internal
structure that will serve as the basis for its construction.

94

4. Software design must describe the software architecture and the interfaces between those
components.

5. Software design plays an important role in developing software.

6. Software design allows software engineers to produce various models that form a kind of
blueprint of the solution to be implemented.

7. We can analyze and evaluate these models to determine whether or not they will allow us
to fulfill the various requirements.

8. In a standard listing of software life cycle processes software design consists of two
activities that fit between software requirements analysis and software construction.

Exercise 12. Translate into English.

1. IlpoekTyBaHHs MPOrpaMHOro 3a0e3MeyYeHHs] — 1€ NPOIEC BU3HAYECHHS apXITEKTYpH,
KOMIIOHEHTIB, IHTEp(PENCIB Ta IHIIMX aTpUOYTIB CHUCTEMH Ta IUIAHYBaHHS MPOrPamMHOrO
MPOIYKTY.

2. Ilicns BHU3HAYEHHS METH Ta TEXHIYHUX XapaKTEPUCTUK MNPOrpaMHOro 3a0e3MeyeHHS,
PO3pOOHUKH MPOTPAMHOI0 3a0€3MeYeHHs PO3POOJISIOTH IJIaH CTBOPEHHS MPOJYKTY.

3. [IpoekTyBaHHS MPOrpaMHOro 3a0€3MeUeHHs] MOXe OyTH He3aJleKHUM a00 3aJeKHUM BIJT
m1aTGOopMH, 0 3yMOBJICHO HASIBHICTIO TEXHOJIOT11, HEOOX1THOI SISl TIPOEKTY.

4. Slkumo NpoeKTyBaHHS MPOrPaMHOrO 3a0e3NeyYeHHS PO3rJISAAaTH SK HpPOLEC, BOHO €
OIepaIli€r0 po3poOJICHHS KUTTEBOTO IIUKITY MPOrPaMHOTO 3a0€3MEUeHHs, 1€ aHai3yIOThCs
BHUMOTH J0 IPOrpaMHOro 3abe3neueHHs AJis TOro, o0 onucaTH Horo

BHYTPIIIHIO CTPYKTYPY, SKa CIYTryBaTHME OCHOBOIO JJIsI KOHCTPYIOBaHHS.

5. Tounimie Kaxy4u, MPOEKT MPOTPAMHOTO 3a0€3MEUCHHS MAa€ OMHCYBATH apXITEKTYPY
porpaMHoOro 3ade3neueHHs: Ta iHTtepdeiicu MK Horo kommoHeHTamu. 6. [IpoekTyBaHHs
MpOrpaMHOr0 3a0€3MEUEHHS JIO3BOJISIE 1HXKEHEpaM 3 pO3pOOJICHHS MPOrpamMHOro
3a0e3MeUeHHs CTBOPIOBATH PI3HI MOJIENI, IO SBISIOTH COOOI0 TIEBHY CXEMY PIIlICHHS, SKE
HEOOX1THO peaizyBaTHu.

7. MoxHa mpoaHaJi3yBaTH Ta OIIHATHA Il MOJENl Ta BU3HAYUTH, Y BOHU OyAyTh
3aJI0BOJIBHSTH P13HI BUMOTH.

8. MoskHa TaKo» AOCIIAUTH Ta OLIHUTHU Pi3HI BapIaHTH PIlIEHb, X IEPEBArd Ta HEIOMIKH.

9. 3pemrTor0 MOXXHAa BUKOPHCTATH KIHIIEBI MOJENi JJiS TUIAaHYBAaHHS HACTYIMHHUX €TalliB
PO3pOOJIEHHSI, a TAKOXK 100 pO3MOYaTH KOHCTPYIOBAHHS Ta TECTYBAaHHS.

10. ¥V cranmapTHOMY MEpemiKy IMPOLECIiB >KUTTEBOTO IUKIY MPOrpaMHOro 3a0e3MeueHHs
PO3POOJICHHSI POrPAMHOT0 3a0€3MEeUEHHSI PO3MOYMHAETHCS 3 aHaNI3y BUMOT 10 HHOI'O Ta
3aKIHUY€ThCS KOHCTPYIOBAHHSM.

11. IIpoekTyBaHHS apXITEKTypH MPOTPAMHOT0 3a0€3MeUeHHS BKJIFOYA€E OMUC BUCOKOPIBHEBOT
CTPYKTYpH MPOrPaMHOTro 3a0€3MeUeHHs, OpTraHi3allilo Ta BU3HAYEHHS PI3HUX KOMITOHEHTIB.

95

12. JleranpbHe MPOEKTYBaHHS MPOrPaMHOrO 3a0€3MEUYCHHS BKJIIOYAE OMUC KOXKHOTO
KOMIIOHEHTA, IOCTaTHIN I HOro moOy0BH.

Exercise 13. Write a summary of the text “Software Design Activities”.

Exercise 14. Translate the word combinations below into Ukrainian.

Design concept; to apply sophisticated methods; a set of fundamental design concepts; an
observable phenomenon; in order to retain the information which is relevant to a particular
purpose; the process of elaboration; decomposing a macroscopic statement of function in a
stepwise fashion; complementary concepts; to yield a good return on investment with respect
to the desired outcome of the project; in terms of performance; quality, schedule and cost; to
imply a hierarchy of control;

horizontal and vertical partitions; information hiding, to specify modules.

Text 2. Design Concepts
Design concepts provide a software designer with a foundation from which more sophisticated
methods can be applied. A set of fundamental design concepts has evolved. They are:
1. Abstraction. Abstraction is the process or result of generalization by reducing the
information content of a concept or an observable phenomenon, typically in order to retain
the information which is relevant to a particular purpose.
2. Refinement. It is the process of elaboration. A hierarchy is developed by decomposing a
macroscopic statement of function in a stepwise fashion until programming language
statements are reached. In each step, one or several instructions of a given program are
decomposed into more detailed instructions. Abstraction and refinement are complementary
concepts.
3. Modularity. Software architecture is divided into components called modules.
4. Software Architecture. It refers to the overall structure of the software and the ways in
which that structure provides conceptual integrity for a system. A good software architecture
will yield a good return on investment with respect to the desired outcome of the project, e.g.
in terms of performance, quality, schedule and cost.
5. Control Hierarchy. A program structure that represents the organization of program
components and implies a hierarchy of control.
6. Structural Partitioning. The program structure can be divided both horizontally and
vertically. Horizontal partitions define separate branches of modular hierarchy for each major
program function. Vertical partitioning suggests that control and work should be distributed
top down in the program structure.

96

7. Data Structure. It is a representation of the logical relationship among individual elements
of data.

8. Software Procedure. It focuses on the processing of each module individually.

9. Information Hiding. Modules should be specified and designed so that information
contained within a module is inaccessible to other modules that have no need for such
information.

Exercise 15. Answer the questions on text 2.

. What do design concepts provide a software designer with?
. What are the fundamental design concepts?

. What is abstraction?

. What is refinement?

. How is hierarchy developed?

. What is software architecture divided into?

. What is software architecture?

. What will a good software architecture yield?

. What is control hierarchy?

10. What does the horizontal and vertical partitioning of a structure suggest?
11. What is data structure?

12. What does a software procedure focus on?

13. What does information hiding imply?

O© 00 ~NO OB WN B

Exercise 16. Change the following sentences to the Passive Voice.

1. Recently this firm has designed a new operating system.

2. He said that Sun Microsystems had developed Solaris as a more open option of

SunOS.

3. Solaris will have got the largest share of the Internet market by next decade.

4. This new operating system has already offered a number of services to application programs
and users.

5. We knew that they had released Windows XP in October 2001.

6. Each field of science will have imposed it’s own requirements on the hardware by next
year.

7. This kind of hardware has greatly facilitated connections between computers.

8. The teacher told us that the system case had provided a solid structural framework.

9. The student says that he will have presented his project by next month.

10. An operating system has relieved applications from having to control the hardware.

11. The teacher said that they designed the Macintosh operating system to be used on

97

Apple Macintosh computers.

12. He will have assigned the tasks by next week.

13. Microsoft has spent money to significant marketing research and development.

14. He said that after more than five years of development work, Microsoft released Windows
Vista.

15. By next decade they will have replaced an old version by a new one.

Exercise 17. Change the following sentences to the Active Voice.

1. Since the last 25 years numerous distinct activities have been identified by researchers.

2. We found out that detailed design, unit testing, integration testing had been included in
construction.

3. Substantial creativity and judgement have been involved in the process of construction.

4. | suppose that the latest enterprise information systems will have been adapted by some
client service companies by next decade.

5. Reduced complexity has been recently achieved through emphasizing the creation of the
code that is simple and readable.

6. They said that our tasks had already been defined by him.

7. A lot of efforts will have been made to reach an agreement by next time.

8. Significant constraints have been recently introduced in our activity.

9. I knew that some unanticipated actions had been observed by him.

10. Details of the software design will have been fleshed out by next meeting.

11. Many mathematical models have been classified as: linear and nonlinear.

12. The professor explained that the notations of the object-modelling technique and object-
oriented software engineering had been synthesized by UML.

13. A standard modelling language will have been created by us by that time.

14. UML has been designed to be compatible with the leading object-oriented software
development methods.

15. We learnt that they had been used extensively to describe the functionality of

software system.

Exercise 18. Make the following sentences interrogative using the Passive Voice.
Model: Employees have already used new programs. — Have new programs been already used
by employees?

1. He had illustrated his example before we asked him about it.

2. We will have designed a new program before they know it.

3. We have identified primary keys very quickly.

4. We have implemented data model by generating SQL.

98

5. They said that they had used the process model in structured analysis and design methods.
6. He will have carried out these experiments in his laboratory by next month.
7. We have used the model due to its ability to express concurrency.

8. He has used the task model to create high-level system.

9. They will have attached all components by the time you ask.

10. This device has performed all calculations at high speed.

11. They will have introduced significant changes by next week.

12. | knew that he had already determined the types of peripherals.

13. We will have run applications on the machine before they come.

14. He has downloaded the programs quite easily.

15. She has bought a new lightweight notebook to carry on business trip.

Exercise 19. Complete these sentences using the correct passive form of the verbs in
brackets (Present, Past or Future Perfect Passive).

1. The teacher said that executive information systems (develop) as mainframe computer-
based programs.

2. This computer applications (use) so far to satisfy senior executive’s needs.

3. I'm sure that great success (achieve) by the company by next term.

4. Computer security problems always (consider) as a significant factor in the development
of computer technology.

5. The lecturer explained us that a web server (hide) in a matchbox so that a few people could
give an accurate count of the number they had in their homes.

6. By next decade good prevention measures (introduce) to stop unauthorized users from
accessing any part of the computer system.

7. Valuable information and services just (protect) from publication by collective processes
and mechanisms.

8. It is impossible to determine whether a disclosure or modifications (authorize) properly
without authentication.

9. He informed me that information just (share) among companies.

10. I want to remind you that my computer system (secure) recently.

11. He mentioned that the threats for computer security (classify) into several categories.

12. A software flaw (discover) by specialists recently.

13. In two year’s time the code from the exploit program (reuse) in Trojan horses.

14. I’'m very sorry to say that his private conversation (eavesdrop).

15. | found out that the program (intend) to act as a system of eavesdropping protocols.

99

Exercise 20. Use the verbs in brackets in the Active or Passive form of Perfect Tenses.
1. The plan for construction of the system (create) before we knew about it.

2. | hope the architect (make) a right decision by next meeting.

3. We (not find) any rough mistakes in our research.

4. | found out that each interface in the system (mechanize) with more than one of the
coordination protocols.

5. It just (ensure) conceptual integrity.

6. The need to retest components (reduce) by next experiment.

7. Up to now these instructions (reflect) choices about particular analysis.

8. He was sure that it (foster) the creation of the simplest solution to the system problem.

9. Lately all solutions (take into account) and a right one (choose).

10. The software (restore) by next week by a good team of specialists.

11. | think they already (define) their tasks.

12. Their achievements (evaluate) by next summit.

13. Some trade-offs already (find).

14. He announced that the implementation of a complex functional feature (split) between
three groups.

15. Today I (review) multiple software existence planes.

Exercise 21. Translate into English.

1. Bin moBigoMuB, 110 KiJIbKa CKJIQJIHUX 3aBJaHb OYJI0 BUKOHAHO ITUM ITPOIIECOPOM JOCHUTH
IIIBUIKO.

2. Iz onepartiitna cuctema Oyjie BCTAHOBJICHA JI0 BEYOpa.

3. HemonaBHo Oynu po3po6iieHi HOB1 Bepcii 1i€i onepariiiiHoi cCucTeMH.

4. BoHu cka3aiu, 110 pe3yabTaTH IXHIX JIOCTI)KEHb BXKE ONMPUITIOIHEHI.

5. Bci mpoGemMH1 TUTaHHS 11010 BJIOCKOHAJIEHHS IPOrPaMHOI CUCTEMHU OYIyTh BUPIIICHI J10
HACTYITHOT'O MICSIIISL.

6. ApxiTeKTypa mporpaMHoro 3ade3nedeHHs OyIia mpe3eHTOBaHa JIOCUTh JIETAJIBHO.

7. 51 ni3HaBCA, 110 B IIPOIIEC MPOCKTYBaHHS OYJIM BBEICHI HOBI Ba)KJIMB1 KOMIIOHEHTH.

8. lesiki KpuTepii NOKpallleHHs NPOLECy IUITaHyBaHHS OyJIH IONHO PO3IJIAHYTI.

9. Bin cka3aB Hawm, 1110 BCl (DyHKITIOHATbHI BUMOTH OYJIM BPaxXOBaHi.

10. 3HauH1 epeBaru bOro METOAY IIOHHO 3HANILIN MIATBEPAKEHHS.

Text 3. Design Considerations

There are many aspects to consider in the design of a piece of software. The importance of
each should reflect the goals the software is trying to achieve. Some of these aspects are:

100

Compatibility. The software is able to operate with other products that are designed
for interoperability with another product. For example, a piece of software may be
backward-compatible with an older version of itself.

Extensibility. New capabilities can be added to the software without major changes to
the underlying architecture.

Fault-tolerance. The software is resistant to and able to recover from component
failure.

Maintainability. The software can be restored to a specified condition within a
specified period of time. For example, antivirus software may include the ability to
periodically receive virus definition updates in order to maintain the software’s
effectiveness.

Modularity. The resulting software comprises well defined, independent components.
That leads to better maintainability. The components could be then implemented and
tested in isolation before being integrated to form a desired software system. This
allows division of work in a software development project.

Packaging. Printed material such as the box and manuals should match the style
designated for the target market and should enhance usability. All compatibility
information should be visible on the outside of the package. All components required
for use should be included in the package or specified as a requirement on the outside
of the package.

Reliability. The software is able to perform a required function under stated conditions
for a specified period of time.

Reusability. The software is able to add further features and modification with slight
or no modification.

Robustness. The software is able to operate under stress or tolerate unpredictable or
invalid input. For example, it can be designed with a resilience to low memory
conditions.

Security. The software is able to withstand hostile acts and influences.

Usability. The software user interface must be usable for its target user/audience.
Default values for the parameters must be chosen so that they are a good choice for the
majority of the users.

101

Exercise 22. Match the aspects to be considered in the software design with their
explanations.

1. Security a) The software can be restored to a
specified condition within a specified period
of time.

2. Reusability b) New capabilities can be added to the

software without major changes to the
underlying architecture.

3. Robustness c) The software is able to add further
features and modification with slight or no
modification.

4. Usability d) The software is able to operate with other

products that are designed for
interoperability with another product.

5. Modularity e) The software is resistant to and able to
recover from component failure.
6. Maintainability f) The software is able to perform a required

function under stated conditions for a
specified period of time.

7. Fault tolerance g) The software is able to withstand hostile
acts and influences.
8. Compatibility h) Printed material such as the box and

manuals should match the style designated
for the target market and should enhance

usability.

9. Packaging 1) The software is able to operate under
stress or tolerate unpredictable or invalid
input.

10. Extensibility J) The software user interface must be
usable for its target user/audience.

11. Reliability k) The resulting software comprises well

defined, independent components.

Exercise 29. Answer the questions on text 3.
1. What aspects should be considered in the design of a piece of software?
2. What is compatibility?
3. How can extensibility be explained?
102

4. What does fault tolerance mean?

5. What is maintainability?

6. What is modularity and what does it allow?

7. What components and information should be included in the package?
8. What are reliability and reusability?

9. Why is robustness important?

10. What acts is well designed software able to withstand?

11. What is the software user interface designed for?

Exercise 23. Compose a dialogue on different design aspects.

>

>

Text 4. Rules of Design

Make sure that the problem is well-defined.

All design criteria, requirements, and constraints should be enumerated before a design
Is started.

This may require a “spiral model” approach.

What comes before how.

I.e., define the service to be performed at every level of abstraction before deciding
which structures should be used to realize the services.

Separate orthogonal concerns.

Do not connect what is independent.

Design external functionality before internal functionality.

First consider the solution as a black-box and decide how it should interact with its
environment.

Then decide how the black-box can be internally organized. Likely it consists of smaller
black-boxes that can be refined in a similar fashion.

Keep it simple.

Fancy designs are buggier than simple ones; they are harder to implement, harder to
verify and often less efficient.

Problems that appear complex are often just simple problems huddled together.

Our job as designers is to identify the simpler problems, separate them, and then solve
them individually.

Work at multiple levels of abstraction.

Good designers must be able to move between various levels of abstraction quickly and
easily.

Design for extensibility.

A good design is “open-ended,” i.e., easily extendible.

103

A\

v v I v

VvV VY

A good design solves a class of problems rather than a single instance.

Do not introduce what is immaterial.

Do not restrict what is irrelevant.

Before implementing a design, build a high-level prototype and verify that the design
criteria are met.

Details should depend upon abstractions.

Abstractions should not depend upon details.

Principle of Dependency Inversion.

The granule of reuse is the same as the granule of release.

Only components that are released through a tracking system can be effectively reused.
Classes within a released component should share common closure.

That is, if one needs to be changed, they all are likely to need to be changed.

I.e., what affects one, affects all.

Classes within a released component should be reused together.

That is, it is impossible to separate the components from each other in order to reuse
less than the total.

The dependency structure for released components must be a DAG.

There can be no cycles.

Dependencies between released components must run in the direction of stability.

The more stable a released component is, the more it must consist of abstract classes.
A completely stable component should consist of nothing but abstract classes.

Where possible, use proven patterns to solve design problems.

When crossing between two different paradigms, build an interface layer that separates
the two.

Don’t pollute one side with the paradigm of the other.

Software entities (classes, modules, etc) should be open for extension, but closed for
modification.

The Open/Closed principle — Bertrand Meyer.

Derived classes must be usable through the base class interface without the need for the
user to know the difference.

The Liskov Substitution Principle.

Make it work correctly, then make it work fast.

Implement the design, measure its performance, and if necessary, optimize it.
Maintain consistency between representations.

e.g., check that the final optimized implementation is equivalent to the high-level
design that was verified.

Don’t skip the preceding rules!

104

Clearly, this is the most frequently violated rule!!!

Good designs can generally be distilled into a few key principles:

Separate interface from implementation.

Determine what is common and what is variable with an interface and an
implementation.

Allow substitution of variable implementations via a common interface.

1.e., the “open/closed” principle.

Dividing commonality from variability should be goal-oriented rather than exhaustive.
Design is not simply the act of drawing a picture using a CASE tool or using graphical
UML notation!!!

Design is a fundamentally creative activity.

Exercise 24. Find in text 4 the English for:
MIEPEKOHATHCS, 10 3aBJaHHS J0OpE BH3HAYCHE; MEPEPaxOBYBATH KPHUTEPii MPOCKTYBaHHS,
BUMOTHY Ta 00OMEKEHHS; PO3TJISIIATH PIIIICHHS K «IOPHY CKPUHBKY»; IeTali3yBaTH MO110HIM

YUHOM; MICTUTH OLIblIIEé TOMUJIOK; TMPOCTI 3aBlIaHHs, 00 €IHAHI pa3oM; KUIbKa PIBHIB

aOCTpakIlii; JErko pO3IIUPIOBAHMM; BIAMOBIJATH KPUTEPISIM MPOEKTYBAHHS, MPUHIIUI

1HBEpPCIi 3aJIeKHOCTEM; OPIEHTOBAHUMN AIMKIIYHUIN rpad; NIPUHIKMI MiJCTAHOBKU «JIiICKOBY;

OLIIHIOBAaTH (PYHKLIOHYBaHHS; ITHOPYBATH NONEpPEAH! MpaBuUja; MOPYUIyBaHE MPaBUIIO;
cUCTEeMa aBTOMATHU30BAHOTO PO3pPOOJIEHHS IPOTPAM.

Exercise 25. Discuss the rules of design. Which of them are the most important/ more
often used/ can be skipped? Can you add any other rules to those listed above?
Exercise 26. Prepare a presentation on one of the topics:

YVVVVVYVYVVYVYYVYY

“Software Design Fundamentals”
“Software Design Context”

“Key Issues in Software Design”
“Concurrency”

“Design Patterns”

“Software Design Notations”

“Software Design Strategies and Methods”
“Function-Oriented -Structured Design”
“Object-Oriented Design”
“Data-Structure-Centered Design”
“Component-Based Design”

105

VOCABULARY

A

ability MOJKJTMBICTb, 31aTHICTh

abort MepepUBaTH, aBapifHO 3aBEPINTYBATH

abuse case BUTIA/I0K HEMIPABWIILHOTO / 3JI0BMUCHOTO BUKOPHUCTAHHS
accept IIPUIMAaTH

access (oTpu)mMatu 10CTyI

access control

KOHTPOJIb OCTYITY

accomplish 31HCHIOBATH; OCATaTH
account 3IIHACHIOBATH O0JIIK
account for BPaxOBYBaTH

account for MOSICHIOBATH

account name

peecTpalriiine / 00J1iKoBe 1M’ st

accounting OyxranTepchKuii 00J1iK; (hiHaHCOBA 3BITHICTD
accurately TOYHO, MPABUIILHO

achieve JIOCSATaTH

act as smth BUKOHYBATH (DYHKI[I}O YOTOCh

active matrix display

PK-expan / nucreit 3 akTHBHOIO MaTPHIICIO

activities TISTIBHICTD
activity Iis1, orepaitis, pooora, 3axij
activity oreparis

activity diagram

niarpama aistmeHOCTI (y UML — miarpama, Ha gxii
MPE3CHTOBAaHI TIEPEX0/IU MOTOKY KepyBaHHS Bi/l O/THi€]

TISUTBHOCTI JIO 1HIIIO1)

actor

axtop (B MoBi UML — mroguna abo mpuctpii, 1mo
B32€EMOJIIE 3 CUCTEMOIO; HOT0 300paXkar0Th y BUTIISIIL

GbIrypKH JFOMHN)

106

address

1) ciipsimoByBaTu (3ycusuis); 2) (to) 3BepraTucs (10

KOT'OCh); aJpecyBaTu

address 3aiiMaTucs (mpo0sIeMoro, TUTaHHIM); OpaTHcs (3a IO0Ch)

adjustment pEryJIrOBaHHS, HAJIArO/PKEHHS, KOPUTYBaHHS

adopt NPUIMATH, 3aITPOBaHKYBaTH

advertisement peKJIaMa, OroJIOIIeHHs

advertising peKama, peKiaMmyBaHHS

adware 0E3KOIITOBHUI pEeKIIaMHUI MPOIYKT; BIpYC, IO CKaYye
peKIamy Ta cram

affect BILIUBATH

affect BILIMBATH

affect BILIUBATH

affiliate dbimian

affordable JOCTYITHUH

aggregate 00’ eIHyBaTU

aggregate level

arperoBaHuii, CyKyImHUHN, KOMIUIEKCHUN PIBEHb

aggregation

arperyBaHHs (MexaH13M 0araTopa3oBOIro BUKOPUCTAaHHS
OJHHUM 00’ €KTOM METOJIB IHIIOTO 00’ €KTa; I MEXaHI3M

peaitizye po3moais inTepdernci)

aid

1) nomomora; 2) nonomarartu, CIipusiTu

aim

1) Meta, Hamip, MparHeHHs 2) MparHyTu

alarm condition

aBapiiiHa / Hebe3neyHa CUTyalis

alarm monitor

MOHITOp aBapiiHUX CUTHAJIIB

align OpIEHTYBATH

all along y/BIIPOJIOBXK YChOTI'O Yacy

allocation BUJUICHHS (pecypcy), po3TallyBaHHsI, PO3MOILT
allow J03BOJISTH

allow for T03BOJIATH, 3a0€31euyBaTh

107

alphanumeric display U(PPOBO-, UPPO-TITEPHUI TUCIUICH

alter 3MIHIOBATH

alternate albTEPHATUBHUH, THIITHI

alternating current (AC) | 3smiHHUI cTpyM

altogether 30BCIM, I[IJIKOM, IIITIKOBUTO

ambiguity HEOJIHO3HAYHICTh

analytic(al) database aHaJIITHYHA 0a3a JaHHUX

animation aHiMalis

annoying JpaTiBHUHN, HAOPUTUBUH, HATOKYWIUBHIA
anomaly BIJIXWJICHHSI BiJ HOPMH, aHOMAJTis
anonymity AHOHIMHICTh

anonymize pOOUTH aHOHIMHUM, IPUXOBYBATH OCOOUCTY 1H(POPMAITIO
anticipate nepeadoavaT

anticipate nependayaT, mepeIIyBaTH

appealing pUBAOIUBUIA

applet MIPUKJIaHA MIHI-TIpOrpamMa, yTHIiTa
applicable NPHUIATHHH, 3aCTOCOBHHUI

application MPUKJIaHA porpama

application iHTepdeic MPUKIATHOTO MPOrpaMyBaHHS

programming interface

(API)

apply (to) 1) crocyBatucs (4oroch); 2) 3actocopyBatu(cs) (y 4oMych /
JI0 YOT'OCh)

appreciation PO3yMIiHHS, yMiHHS 100pe po3iopatucs (y 4OMyCh)

approach X1

appropriate BIJIMOBITHUI; TOPEUHMIA; IPHIATHUN

appropriate BIJIMOBITHUH, HAJICKHUN

approximately pUOIN3HO

108

arbitrary

JIOBUIbHUNA

architectural risk

analysis

aHaJl3 apXITEKTYPHOT O pPU3UKY

architecture pattern

apXITEeKTypHUH 11a0JI0H

archive apxiByBaTH, MOMIIYBaTH J10 apXiBY
arise BUHUKATH, 3 SIBIIATUCS, TIOCTaBATH
arrangement oprasizaris

array of pixels

MacCHB €JIEMEHTIB 300paKeHHS

artifact aptedaxT, IpOAYKT po3poOIeHHS, POOOUNIA TPOTYKT
as well as TaK caMo, SIK; a TAKOX

asset pecypc, ubpoBuit 00’ €KT

assign NpU3HAYATH, PO3MOIUIATH

assignment NPU3HAYCHHS, IPUCBOEHHS, PO3IIO/ILIT

associate OB’ SI3yBaTH

associated OB’ s13aHM (13 YUMOCH), BIAIOBIAHUI (10 YOTOCh)

Association for

Computing Machinery

Acoriariis 3 004YUCIIOBAILHOT TEXHIKHT

assume IIPUITYCKAaTH, BBAXKATU
assure rapaHTyBaTu; 3a0e3neuyBaTu
attach NPUETHYBATH, TPUKPITUTIOBATH

attack amplifier

[MJICWIIOBAY aTaK

attack pattern

cXcMa aTakKnu

attempt poOyBaTH, poOUTH cripoOy, HaMaraTucs

attribute aTpuoyT

auditing peBi3is / mepeBipKa CUCTEMH, CIICHT. ayIUTyBaHHS
auditory CIIyXOBHUI

auspice CTIPUSTHHS

authentication

aBTeHTHIKAIIA, MATBEPKCHHS aBTCHTUYHOCTI, 11eH-

109

Tudikaris

authentication

aBTeHTHU(DIKaLls, IepeBipKa (CIPaBKHOCTI)

authorization aBTOpHU3ALIis

automation aBTOMAaTHKa

availability 1) excrutyaTariiiiHa TOTOBHICTh; 2) MpaIe3aaTHICTb,
HETePEPBHICTh

available HasSIBHUH, M1IXO0KUH

B

backdoor Ja3iBKa, TAEMHUHN BX1Jl, YOPHUM BXiJ, IIIIX 00XOMy CHC-
TEMH 3aXHUCT

background 1) moxomkeHHs, OiorpadivHi AaHi JTFOAUHY; 2) KBaTi(Di-

Kallisi, OCBiTa, ((paxoBa) miAroToBKa

backlit display

€KpaH 3 MiJCBIUyBaHHIM

backplane

3’€IHYBaJbHA TUIaTa

backup

pe3epBHE KOIIIOBAaHHS

backup media

pe3epBHI HOCIT

backward-compatible

3BOPOTHO CYMICHHUM, CYMICHUH «Ha3a» (TaKWi,
110 HE BUKJIIOYAa€ BUKOPHUCTAHHS MTOMIEPEIHIX BEpCiid UYn

Moau(piKaIiif)

balanced serial interface

3pIBHOBAYKCHHUM MOCIIIOBHHM 1HTEpderic

bar

MPSIMOKYTHHK (Ha OJIOK-CXEM1)

bar chart

CTOBIYMKOBA JIiarpama, rictorpama

Basic Input / Output
System (BIOS)

0a30Ba cUCcTEMa BBEICHHS/BUBEICHHS

be on the lookout (for)

OyTH HacCTOPOXi (11010 YOT'OCh), MUIBLHYBATH,

IIykKaTH (110Ch)

be regarded as

pPO3TIAIATUCS SIK

be subject to smth

nepedyBaTH 1] BILIUBOM YOT'0Ch, OYyTH 00’ €KTOM YOr0Ch

110

be uniquely determined

OJHO3HAYHO BU3HAYATHUCA

behaviour

MOBEIHKA, PEXXUM pOOOTH

behaviour diagram

Jiarpama MoBeIHKU

behavioural perspective

MOBEIIHKOBUU aCEKT

behavioural sciences

0ixeBiopu3M

benefit

1) kopucTs, BUroga, npuOyToOK; 2) MaTu MPUOYTOK

benefits IJIBIH TA JOIIOMOra, COLIIAKET

bibliographic 0i0morpadiuanit

bill 0aHKHOTA, KYIIOpa, paxXyHOK

binary JBINKOBUI (haiin

Bitmap pactp, pactpoBe (6iToBe) 300paxeHHs (rpadiuHe 300paxeH

HSl y BUTJISAIl MACHUBY TOUOK Ha €KpaHi)

bitmapped graphics

pacTtpoBa rpadika

black-box «4OpHA CKPHHBKAY, IPUCTPIiit a00 rmporpaMa 3 HEBiIOMOIO
BHYTPIIIHBOIO CTPYKTYPOIO

blueprint €CKi3, KPECIICHHS, IPOCKT

blueprint cxeMma, Oy/10Ba, CTPYKTypa

boolean OymBChKHUI, OYITiB

boot MOYaTKOBE 3aBaHTAXKEHHS (KOMIT I0TEpa),
caMo3aBaHTaKEHHS

boot 3aBaHTAXXYBAaTH, BAKOHYBATH [TOYaTKOBE 3aBAHTAKCHHS

boot firmware

MIKpOIpOrpaMa Mo4aTkoOBOTO 3aBaHTAXKCHHS

bootable media

3aBaHTXKYBaJIbHUI HOCIH

bot (ckop. Bijg robot)

MEpEeKEBHI areHT-po0oT (Imporpama, 1o aBTo-

HOMHO BHPIIITY€E 3aB/IaHHS)

botnet

00THET (Meperka KOMIT I0TEPIB, YPAKEHUX MPOrpaMolo, sKa
MIATPUMYE 3B’SI30K 3 i po3poOHUKaMu AJid TOT0, 11100

HAJCWJIATH MOIITY O€3 3aluTy, aTaKyBaTu BeOCalTH)

111

boundary

MCIKa

brain

MO30K, PO3yM

branch office

BIJITITICHHS, (iTist

breach

MOPYILIEHHS

break (p.broke, pp.

broken) into a system

«31aMyBaTH» CUCTEMY (HE3aKOHHO BXOJIUTH JI0 CUCTEMH)

breeding ground

POAIOYHM IPYHT

briefly KOPOTKO, CTHUCJIO
broad IITUPOKHIHA
broadly y 3arajbHUX pHCax

buffer overflow

nepenoBHEHHS Oydepy

buggy 10 MICTUTb 3HAYHY KUIbKICTh TOMUJIOK, IPOd. «TJIFOUHHI
buggy code KOJI, 1[0 MICTUTh TIOMUJIKU
build time 4ac KOMIIOHYBaHHS / MOOYIOBU MIOTOYHOTO BapiaHTy
nporpamu
bundle 00’emHyBaTH (y IMaKer)
bus topology IMHHA Torooris (tomosoris JIOM, y skiit yci abo-
HEHTH JIHIIHO M1’ €IHAH1 10 OJIHI€T MaricTpanmi (u-
HU) TIEpECUJIaHHA JIaHKX)
business (koMepIriiina) opraHi3altis

business activity

013Hec-oneparis

business modelling

013HeC-MO/IETFOBaHHSA

business process

Oi3Hec-Tpolec, TEXHOJOTTYHUN / BUPOOHUYUH IIPOIEC

business workflow

NoTiK O13HEeC-omnepariii

bypass 1) 00xiz; 2) 00X0aUTH
C

call for BHUMararu, norpedyBartu
call for BUMaraTu

112

capacity

NPOAYKTUBHICTb, MPOMYCKHA 3JJaTHICTh

caption CyoTHTp

capture 30upartu (J1aHi)

capture (1kcyBaHHS 300paKE€HHS
capture 30upaTu (iHpopMaliio)
carefully YBaKHO, 00EPEKHO

carelessness

HEYBaXXHICTh, HEOOEPEIKHICTh, JIETKOBAXXHICTb,
HEA0AaJILCTBO,

HCOAOTPUMAHHA ITPAaBUJI Oe3reKu

cast (p., pp. cast)

TYT: IPEACTABIISITH

catch-all phrase

BCEOCSIKHA (hpa3a

categorize KJIacuQikyBaTH
causal NPUYHHOBUIA
cause 1) npuuuHa; 2) COPpUUNHATH, BUKJIUKATH

CD/DVD-ROM drive

nrckoBof s komnakT(DVD)-auckis

central processing unit
(CPU)

neHTpaibHui pouecop (LIT)

challenging CKJIQTHUI
change 1) 3miHa; 2) 3miHIOBaTH(CS)
chaotic HEBIOPSIKOBAHHA, XaOTHYHHIA

char (character)

3HaK

chief executive officer

KEpiBHUK, TOJIOBHA MTOCAI0Ba 0c00a, TeHepasib-

HUW AUPEKTOp (KOMMaHii, MiIpHeEMCTBA)

chief executive officer

KepiBHI/IK, I'OJIOBHA I10Caa0Ba 00063, T'CHCpAJIb-

HUN AUpeKTOop (KOMIaH1i, MIpHUeEMCTBA)

child diagram MOPOJIKEHA Jliarpama, Jiiarpama Jpyroro piBHs
chipset MIKPOIPOIICCOPHUI HAOIp, JirceT
choice BUOIp

113

chunk (of data)

nopiis (1aHuXx)

circumvention

00x11

claim

CTBCPAKYBATH, 3asBJIATH

class diagram

niarpama kiaciB (miarpama UML, sika npe3eHTye
CTaTUYHUI MOTJIS]] HA CUCTEMY 3 MOTJISATY KJIaciB i

BIIHOIIICHb M)XK HUMH)

class-action law suit

KOJICKTUBHHUM CYJIOBUH I1030B

clearly OYEBHJTHO, 3PO3yMILJIO

clip-art NOJITUNIAX, Tpadiuauii pparMeHT
closely 1) 6;u3bKoO, TiCHO; 2) AyX)e
closure 3aKPHUTTS, IPUITHHCHHSI

cluster CYKYITHICTB, TPpyIIa, KJIacTep
coarse BEJIMKOMOIYJIbHUAN

coding porpaMyBaHHS, KOJTyBaHHSI

cognitive psychology

KOTHITUBHA IICUXOJIOTIA

coin

MOHCTAa

collaborate

CIIBMPAIIOBATH

collaboration

CIIBMpAIls, CIIJIbHA Mparls

collage KOJIaXK, KOMOIHYBaHHS Pi3HUX €IIEMEHTIB
collapse 1) pyitHyBaHHS; 2) BUXi] 3 JTaty
collection CYKYIHICTb, Ha0ip

collection CYKYITHICTh

combination HO€THAHHS

combination MO€THAHHS

come to terms (with)

JIOMOBJISITUCS (3 KUMOCB); MpuiiMaTu (YUIiCh) YMOBU

command line interface
(CLD)

iHTep(eiic KOMaHIHOTO psJiKa, KOMaHIHUM 1HTepderic

114

Common Object

Request Broker

3arajibHa apXiTekTypa Opokepa / mocepeTHuKa 3aIuTIB J0

00’exTiB,cTanapT CORBA (TexHosorist mooynoBu

Architecture (CORBA) | po3nofiieHux 00’ €KTHHX IIporpam, 3arpoloHOBaHa
¢dipmoro IBM)

commonality CHIUIBHICTB, YHI(IKOBaHICTH

commonly 3a3BHYal, 3BHUAHO, IIEPEBAKHO

communicate

nepenaBaTu

communication

CIUIKYBaHHS, 3B’ SI30K

communication diagram

niarpama koMmyHikarii (mounHatouu 3 UML 2.0;

y UML 1x — e aiarpama koomnepaiiii)

communication method

MeTo nepeaa(Ba)HHs iHPpopmMali

communications

technologies

KOMYHIKAIIH1 TEXHOJIOT11

Compact Disk Read-

CD-ROM na xoMnakT-aucKy

Only Memory (CD-

ROM)

compared to MOPIBHSHO (3 YUMOCH)
compatibility CYMICHICTh

compatible CYMICHHM, CTIOJTYYHUH, CXOKHIH

complementary

JIONOBHSJIBHUM, JOJATKOBUM

complete 3aKIHYYyBaTH, 3aBEPIIYBATU
complexity CKJIQJTHICTh
complicated CKJIQHUI

component diagram

niarpaMa KOMIIOHCHTIB

component failure

BIIMOBA €JIEMEHTA

Component Object
Model (COM)

MOJEIb KOMIIOHEHTHUX 00’ €kTiB Microsoft

component view

KOMITOHCHTHC IMPCACTABJICHHSA

115

composite

KOMIUIEKC, CYKYIHICTh

composite structure

alarpaMa KOMIIO3UTHHUX CTPYKTYP

diagram

composition 1) cknan; 2) noOyaoBa, GopMyBaHHS, YTBOPCHHS
comprise MICTUTH B cO01

compromise 1) mopymyBatu (KOH(DIICHIIIHHICT), PO3TOJIONTYBATH

(TaemHy 1H(pOpMaIito); 2) 31aMyBaTH (CUCTEMY)

computer crime

KOMIT IOT€pHA 3JIOYNHHICTh, BAKOPUCTAHHS KOMII FO-

Tepa I CKOEHHSI IIPABONOPYLICHb

computer security

KOMIT FOTe€pHa Oe3neKa

computer technology

0OYHCITIOBAJIbHA TEXHIKA

computer-aided design

aBTOMAaTU30BaHE IPOECKTYBAHHS

Computer-Aided
Software Engineering
(CASE)

CHUCTCMA aBTOMAaTHU30BaHOI'O p03pO6J'I€HH}I Imporpam,

CASE-TexHonoriga

computer-based training

KOMIT'FOT€PU30BaHE HABUYAHHS

computing system

00YHMCIIIOBaIbHA CUCTEMA

concept

[MOHATTS, KOHLIEIILS

conceptual view

KOHICTITYAaJbHE MPCACTABJICHHA

concern

npoOjieMa, MUTaHHS, CIIpaBa

concern

1) 3aHenoko€eHHsI, TypOoOTa; 2) 3aIlikaBiIeHICTh, 1HTEpEC; 3)

y4acTh

concerned with

OB’ s13aHUM (3 UUMOChH)

concise KOPOTKUM, CTUCIIHM, JTAKOHIYHUHN

conclude POOHUTH BHCHOBOK

concurrency napaienizm

concurrency 1) mapasnenizm; 2) B3a€MHa CyMICHICTh (BJIIaCTHBICTh

00’€KTIB B 00’ €KTHO-OPIEHTOBAHOMY IIPOrpaMyBaHH1)

116

concurrency

napaseinizm

concurrently

OAHOYACHO, ITapaJICIIbHO

confidentiality

KOH(1IEHIIIHHICTD, CEKPETHICTh

confidentiality

KOH(1JIEHLIHICTb

configuration item

eJIEMEHT KOH]Irypauii

configuration time

yac KOH(DIrypyBaHHS

conformance (to)

BIJIMOBIIHICTH (0 YOTOCh)

conglomeration

KOHIJIOMEpAT, CyMILI

conjure up

BUKJIMKATH B ysIBI

consecutive

[MOCJTIJIOBHUNA

consent

3roja, JTO3BLI

consequently

TOMY, B pe3y/bTari (TOro, I10)

consider

po3rsiaaTi

consideration

MIpKyBaHHS, ITiJICTaBa

consideration

MIpKyBaHHS

consistency

JIOT1YHICTB, ITOCIIOBHICTD, 3B’ I3HICTh

consistent OJHAKOBHH, €IMHUM, CTAOLILHUI

constant MOCTiliHA BEJIMYMHA, KOHCTAHTA

constantly MOCTIHHO

constraint OOMEKEeHHSI

constraint OOMEKEHHSI

content 3MICT, iH(pOpMalliiiHe HATIOBHEHHSI

content 3MICT, iHpOpMalliiiHe HATIOBHEHHSI, KOHTEHT

content security threat

3arpo3a 6e3mneri KOHTEHTY

contribute

CIIPUATH

control design

PO3PaXYHOK CUCTCMH aBTOMATHUYHOI'O PCI'YJIFOBAHHA

control flow

MOTIK KEpyBaHHS

control structure

KEepiBHA KOHCTPYKIIiS

117

controller

KOHTPOJIEP, MPUCTPiil KEpyBaHHS

conversely HaBIaKH

conversely HaBIIAKU

convert [IEpETBOPIOBATH

convey niepeaBaTH, BUCIOBIIOBATH

convey nepenaBaTH (JyMKY), BUCIOBIIOBATH (YMKY)

convince IIEPEKOHYBATH

convinced BIICBHCHHI, TICPEKOHAHUH

cool OXOJIO/KYBATH

core OCHOBHMH, IEHTPAIbHUN

corruption 1) 3miHa, BuKpuBIIeHHS (1HdOpMalii, TEKCTY); 2)
TTOTIIKOJIYKEHH

count MipaxyHOK

counters JTYWIbHI QYHKIT

cover OXOTLTIOBATH

cover OXOILTIOBATH, MICTHTH B CO01

covert TAaEMHUU, HEBUJIUMUH, CEKPETHUMN

craft BHUTOTOBJISITH, CTBOPIOBATH

craft-like npodeciiHuii, MalicTepHHIA

crash 1) aBapiitHa BiiMOBa, 301i; 2) 3a3HaTH aBapii / 30010

create CTBOPIOBATHU

creation CTBOPECHHS

creativity 1) TBopui 3/110HOCTI, 3AaTHICTH CTBOPIOBATH; 2)
KpeaTUBHICTb, MOTEHII N 1HpOpMaIlii

credentials MaHIaT (OOIKOBHH 3alKC 3 MapaMeTpaMu JOCTYITy KOPHC-

TyBa4a, COPMOBAHUH TICIS HOTO YCIIIITHOT

aBTeHTHU(DIKAaITIT)

118

crippled

(He)npuaaTHUM; OpaKkoBaHUM; 31TICOBAHUM

criteria (pl. Big KpuTepii

criterion)

critical BAXKJIMBUI;, HEOOX1THUNA

Cross MIIIaHKUH, T10pUIHUN

Cross NepeTUHATH

cryptosystem KpUNTOCUCTEMA

cure JKH, 3aci0 BUPILIEHHS MTPOOIeMuU
currently Ternep, 3apa3, HuHi

customer KJTIEHT, 3aMOBHUK

customer database

KJII€HTCHhKa 0a3a JaHux

customization

IMPHUCTOCYBAHHA Hi):[BUMOI'M 3aMOBHHKA

customize

HaJIalITOBYBATH, aAdIITyBaTH

cybercriminal

Ki0ep3104MHELb, KOMIT FOTEPHUM 310411

D

data architecture

apXxITeKTypa (CTpyKTypa) AaHUX

Data erasure

CTUpPAHHS JIaHUX, pyHHYBaHHs 1H(opMmarlrii

Data Loss Prevention
(DLP)

MOMEPCAKCHHA BTpAaTH JaHUX

data structure

CTPYKTYpa JIaHUX

data transfer rate

MIBUKICTH TIEPECUITAHHS TaHUX

data warehouse

CXOBHIIIE JaHUX

database

0a3a JaHux

database architecture

apXxiTeKTypa, KoHirypariis 6a3u JaHUX

database index

iHIeKC (MTOKa3HUK) 0a3y TaHUX

database management
system (DBMS)

cucrema kepyBanHs 0azamu nanux (CKBJI)

database schema

CXeMa JIaHuX, JIOT1YHA CTPYKTYypa JaHUX (30BHIITHIN

119

oruc abo miarpama 3aaaHoi y CKB/ ctpykTypu
3amucy; TepMiH OyB 3ampoBaKeHuil y 1971 p. mis

JIBOPIBHEBOTO MIIX01Y 0 ONMUCY CTPYKTYypHu BJI)

Data-stealing malware

IIKIJTMBI TTPOTPaMH, 10 KpaayTh AaHi / iHDOp-

MaIlio
day-to-day MOBCSIKICHHHM
de facto dakTu4HO, jae-(hakTo
deadlock B3aeMHE OJIOKYBaHHS, IPOQ. KIIHY
debate nedaTH, TUCKYCis
debugging HaJIaroKEeHHS
deceive 0OMaHIOBaTH
deception oOMaH, OpexHs

decision support system
(DSS)

CHUCTEMa MATPUMKH PillleHb

decision variable

3MiHHA PIIIEHHS

decline 3HIDKEHHS, 3aHeIal

decompose PO3KJIaJIaTH Ha CKJIAOBI1, MiaBaTH JCKOMITO3HIIIT
decompositional JIIEKOMITO3ULIIMTHUAMN

decrypt po3mudpoByBaTH

decryption JCKOIyBaHHS, TeIIH(ppyBaHHSI

dedicate pu3HaAYaTH

default value

3HAYCHHS 34 3aMOBYYBAaHHAM

defeat nepemMaraTy, JiKBiJJOBYBaTH
defective HEJIOCKOHAINH, 1e)eKTHUH

define BH3HAYATH

definition BU3HAUYEHHS, Ne(iHIlis; TIyMadyeHHS
deliberately HaBMHCHO, CB1JJOMO

delivery vehicle

3aci0 OCTaBJIEHHSI

120

denial of service attack

aTaka TUIy «B1JIMOBa 0OCITyTOBYBaHHs» (JIis, 110

CIPUYHUHSE BIIMOBY OOCITYyrOBYBaHHS 3aKOHHUX

KOPHUCTYBAYIB)
denote O3HaYaTH
denote 1) o3HauaTH; 2) mo3HAYaTH

deny (access/resources)

BIIMOBJIAATH (Y JOCTYII/pecypceax); He TaBaTh

JOCTYIUTHUCS 710 1H(OopMaIlii; 3anepeuyBaTi

Department

BIJILT

depend (on)

3anexaTu (Bin)

dependency 3aJIeXKHICTh

dependent 3aJIe)KHA BEJTMYMHA
dependent quantity 3aIe)KHa BEITUYHMHA

depict OIHCYBATH, 300paXKyBaTH
deploy pO3ropTaT, pO3TalIOBYBATH
deploy pO3MIIIyBaTH

deployment PO3MIIIIEHHS

deployment diagram

niarpama posropranss (niarpama UML, sxa okpec-
moe (Hi3UUHY KOH(DIrypaiiro CHCTEMHU B TEpMiHAX
BY3JIIB 1 3’€JTHaHb M)XK HUMH, HANPUKJIAJ, 3 J10IIOMO-

rOl0 00YMCITIOBATIBLHOI MEPEXK1)

deployment view

NpeJICTaBIICHHS PO3MIIIEHHS (TIPEICTaBICHHS CUCTEMHOT
apXITEKTYPH, 110 BUAUISIE BY3JIH, KOTP1

(GhopMyIOTh anapaTHy TOIOJIOTTI0 CUCTEMH)

deposit 1)aeno3ut, paxyHOK y OaHKy; 2) IENO3UTHUI BHECOK
derived TOX1AHU M

design pHU3HAYATH

design 1) npoekTyBaTH; 2) MpU3HAYATH

121

design PO3IPOOIICHICTD MPOEKTYBAHHS

compartmentalization

design pattern KOHCTPYKTUBHUH 11a0JI0H

desktop publishing BEPCTKA IPYKOBAHUX BHJIaHb Ha KOMII IOTEPI
destruction pyHHYBaHHS, 3HUICHHS

detailed IeTaIbHUMN, TOCKOHAIUN

detectable TaKH, 10 MOXe OyTH BUSBIICHUM, BUSBHUN
detection BHSIBJICHHS

determine BU3HAYATH

deterministic JeTepMiHyBaIbHUI; BU3HAYAIbHHIA
development CepeIOBHIIE PO3POOIICHHS

environment

development team rpyma po3poOHUKIB

device MPUCTPii, MEXaHI3M
device-independent armapaTHO-HE3aJICKHUM TPOTOKOI
protocol

devote IPUCBSIYYBaTH

diagram JiarpaMa, cxema

dialer HPUCTPii HAOOPY HOMEPIB
dial-up modem MOJIEeM KOMYTOBAHOI JIiHii epeCcuIIanHs
differential equation audepeHIiiiie piBHIHHS

Digital Versatile DVD-ROM Ha KOMIIaKT-TUCKY
[Video] Disk Read-

Only Memory (DVD-

ROM)

digitized (m)oumdpoBaHmii

dimensions po3mipu

direct access attack aTaka MpsiMoro JIOCTYITY

122

direct current (DC)

MOCTIHHUN CTPyM

directed acyclic graph

OpIEHTOBaHUM alUKITYHUN rpad

(DAG)

directly 0e3mnocepeHbO, MPSMO, TOUHO
disastrous KaracTpopIgHM, 3ryOHNI
disclosure PO3KPHTTSI, BUKPUTTS

disguise MacKyBaTH

dishonest HCUCCHUIA, HETTOPSTHUIMA
disinfection 3HE3apaKeHHsI, J1e31HDEKIIis
disk drive JIUCKOBO/I

disk encryption

hardware

amapartHi 3aco0u mudpyBaHHs AUCKY

disk encryption

MpOrpaMHi 3aco0u MudpyBaHHS JUCKY

software

dispense BUABATHU

distil OYHIIyBAaTH

distinct SICHUH, BUPA3HMIA, YITKUN

distinct from

BiAMIHHHUH (B1]] 90T OCBH)

distinction PI3HUIA, BIAMIHHICTb
distinguish BIZIPI3HATH

distorted BUKPHUBJICHHIA

distract 3aBayKaTH, BIIBOJIIKATH
distribute PO3MOAUIATH

distributed database

po3moaiicHa 0a3za JaHuX

distributed parameter

PO3MOJITICHU TapaMeTp

distributed system

PO3IIOiICHA CHCTEMA

diversification

BBEJICHHS PI3HOMAHITHOCTI, AUBepcudikaris

divest

1030aBJisATH (MpaB, MOBHOBAYKEHB, BIACHOCTI)

123

DNS — 1) Domain
Name System

CITy»K0a IMEH JIOMEHIB;

DNS server

CepBep CIyKO0W IMEH JJOMEHIB

document-text

,IIOKYM@HTHO-TCKCTOBI/Iﬁ

dollar amount

CyMa B Jloyiapax

domain

(npeameTHa) rainys3b, KOHTEKCT (CEepe/loBHUIIE, Y IKOMY

MMOBUHHA MPAIIOBATH IIporpama)

Domain Name Server

cepBep JOMCHHUX IMEH

domain specific

IITO BU3HAYAETHCA Ia1y3310 3aCTOCYBAHHA

dominate

nepeBaxkaTH, MaHyBaTH, TOMIHYBaTH

dongle

1) (eneKTpOHHUIA) 3aXUCHUHN KITIOUY-3ariylIKa
(g’ enHyeThCS

710 TIOPTY BBEJICHHS—BUBECHHS); 2) €IEKTPOHHUMN
IpUCTPiit

3axuCTy (BOYZOBaHUN y KOMIT IOTEP)

download

3dBAHTAXXYBATH, CKA1yBaTH

draw (p. drew, pp.

drawn) (from)

no0yBaTH, AicTaBaTH, OpaTH (3 4Oroch)

drill-down capabilities

MO>KJIMBOCTI J€Talli3yBaHHS

drive

3aImycKaTH, KepyBaTu

drive (p. drove, pp.

driven)

pyLIaTH, IPUBOJUTHU B PYX, CIIYTYBATH PYILIEM

drive-by download

process

IMpOoIcC aBTOMATUYHOI'O 3aBAHTAKCHHA

HEMOTPiOHOT MporpamMu B KOMII FOTEP

driver

IpaiBep, pymIiiHa cuia

driving record

0co00Ba KapTKa BOJIIS

dropper

CKuagad

dumb terminal

MPOCTU (HEIHTENEKTYyaIbHUM, «HIMUII») TEpMiHAI

124

E

eavesdropping

M1JCIIyXOBYBaHHS, IEPEXOIICHHS

edge nepesara

education BMXOBaHHS, OCBITa, HABYAHHS
effort 3yCHILIS; 00csT poOiT, podoTa
elaboration JeTaibHe PO3POOJICHHS, YTOUHEHHSI

electrical engineering

GHGKTpOTGXHiKa

electromagnetic

interference (EMI)

€JIEKTPOMArHITHI 3aBaJid (HaBEICHHS)

electronic data

CJICKTPOHHUN 00MiH 1H(pOpMAITIEIO

interchange

electronics CIIEKTPOHIKA, EJICKTPOHHI CXeMHU

eliminate BUJIAJIATH; yCYBaTH

elusive 1) HEeBUpA3HUIA, HETIEBHUH; 2) BAXKKOIOCSHKHHUMA

embarrassing

TaKuH, 110 3aM1yTye (KOroch); YCKIaaHIOE (1I1OCh)

embedded (built-in)

operating system

BMOHTOBaHa / BOy/I0BaHa omepailiiiHa cucrema

emerge BUHUKATH, TIOCTABATH

emerge BUHUKATH, 3aPOKYBATHChH

emphasis aKIIEHT, HaroJjoc

emphasis aKIIEHT, Harojoc, 0co0JIMBa yBara

emphasize HaJIaBaTH OCOOJIMBOTO 3HAYEHHS, aKIIEHTYBATH yBary

emphasize HaJ[aBaTH OCOOJIMBOTO 3HAYEHHS (YOMYCh), MIIKPECTIOBATH
(1mock), poOUTH aKIIEHT, aKIIEHTYBAaTH yBary,
HaroJIonryBaTy (Ha 4OMYCh)

employ Haiimatu (Ha poOoTy)

enable POOUTH MOXKIIMBUM, YMOXKIIUBIIIOBATH, J03BOJISTH

enable JaBaTH MOXKJIUBICTh, YMOXKJIUBIIIOBATH, JI03BOJISATH

125

enable

JO3BOJIAATH

enable 1) akTHBYBaTH, BMUKATH; 2) po30JI0KYyBaTH; 3)
YMOJKJTUBITIOBATH, JI03BOJISTH

enclosure 1) xopryc; 2) oroposa, 3aroposa; 3) o0ropoi)KyBaHHS;
4) BKJIaJieHHS (BMICT KOHBEPTA)

encrypt mudpyBaTH, KOJyBaTH

encryption KOAyBaHHS, (PP YBaHHS

end-user database

0a3a JaHUX KIHIIEBUX KOPUCTYBayiB

enforce

3MIIHIOBATH, TOCUIIIOBATH

engineering approach

TEXHIYHUAN MTIX1T

engineering database

KOHCTPYKTOPChKa 0a3a TaHux

engineering discipline

IHKeHepHa / TeXHIYHA JUCIHILTIHA

engineering drawing

TEXHIYHE KPECIEHHS

enhance 30UTBIITYBaTH, MOTINIITYBATH
Enhance MOJTIMIITYBaTH, 30UTbIIIYBATH
enhance MOJIIIITYBATH, YIOCKOHATIOBATH
ensure 3a0e3neuyBaTu

ensure rapaHTyBaTH, 3a0e31euyBaTu

Enterprise Java Beans
(EJB)

cnenudikanis EJB (Ha cepBepHiil 4aCTHHI CTaHIaPTU3YE
A0CTYM 0 6a3 JaHHUX Ta 10 CUCTEM O0pOOICHHS
TpaH3aKLU1H, 110 BaXKIUBO JIJIs1 KOPIOPATUBHUX NMPUKIATHUX
porpam, OCKUTEKH 3a0e31euye iX mepeHeceHHs Ha 1HIII

maThopmMu)

enterprise-wide

(3araJibHO)KOPHOPATUBHUM, y MAcIITa0l MiAIPUEMCTBA

entertainment

po3Bara, 3a0aBa

entire I[ITHIA, TOBHHM, YBECH
entitle (to) JaBaTH IPaBo (Ha II10Ch)
entity 00’€KT

126

entity

(JtoriyHuit) 00’ €KT

entity relationship

diagram

Jiarpama BiJIHOIIEHb JIOTTYHUX 00’ €KTIB-

cyrHoctel, ER-miarpama

entity-relation diagram
(ERD)

Jiarpama BiJIHOIIEHb JIOTTYHUX 00’ €KTIB-

cyrHocTel, ER-giarpama

entry

€JIEMEHT, TO3UIS

environment

OTOYEHHSI, CEPEIOBUIIIEC

envision VSIBJISITH, TIEpei0avyaTu

equate MPUPIBHIOBATH, OTOTOKHIOBATH

equate OB’ 13yBaTH

equation PIiBHSHHS

ergonomics €proHOMiKa, BUBUYEHHS TPYJOBUX MPOIIECIB 1 YMOB Tpaiii

essential characteristics

ICTOTHI, BaKJIMB1 XapaKTEPUCTUKU

essentially IO CYyTi, MOCYTHBO, iICTOTHO, HaJI3BHYAHO
establish BCTaHOBITIOBATH

estimate OIIIHIOBATH, ITiJIPaXOByBaTH

Ethernet Mepexa (IPOTOKOJI, CTaHIapT, TEXHOJIOTs)
Ethernet iHTepdeic MaTuX 00YUCITIO-

small computer systems

interface (SCSI)

BaJIbHUX cucteM, iHTepderic SCSI

evaluate

OIIHIOBATH, BU3HAYATH

event flag

npamnopenp moii

event handler

00pOOHUK MOTIH

egvent occurrence

HACTaHHA TOA11

eventually BPEIITI PEIIT, 3PEIITO0, 3 YaCOM
evolution 1) po3BUTOK; 2) pO3pO0IICHHS
evolve PO3BUBATHUCS

evolve PO3BUBATHCS, €BOJTIOI[IOHYBATH

127

exactly

TOYHO

examine

JOCIIKYBaTH, aHaJ13yBaTH

excited

3aXOIUIEHUN

exclusive lock

0JIOKYBaHHS 13 3a0€3MEUEHHIM B3a€EMOBUKIIIOYAIHLHOTO

noctymy (1o Habopy TaHUX)

executable

IO BUKOHYETHCA

executable software

BUKOHYBaHE MMPOrpaMHe 3a0e31eueHHS

execution environment

1) cepenoBullle BUKOHAHHS; 2) €IEMEHTH Tpoliecopa

execution thread

MMOTIK BUKOHAHHS; ITOTIK 3aBAaHb, 1110 BUKOHYIOTHCS

Executive information
system (EIS)

iH(dOopMalliiiHa cucTema il KePIBHUKIB

exhaust

BUYEPIYBATH

exhaustive

BUYEPIHUN, MOBHUM, BUCHAKJIUBHI

exogenous variable

€K30reHHa (30BHIITHS) 3MiHHA

expansion card (Takox

expansion board, PC

KapTa / marta po3UIMpeHHs

card)

expect OYIKYyBaTH

expensive JAOpOTuit

experience BUNIPOOYBaTH (Ha c001), BIAUYBATH; TYT: CIIOKUBATU
expert system EKCIIepTHa cucTeMa

expertise 3HaHH:A, KBaJiQiKarlis, J0CBi

explicitly SICHO, TOYHO; BIIKPUTO, HEJIBO3HAYHO
explicitly 1) sicHO, 4iTKO; 2) SIBHO

explicitly OYEBH/IHO, EKCITIIIUTHO, EKCILIIKOBAHO, 30BHI
explode TYT: po30HUBaTHCS (Ha CKJIa0B1)

exploit mporpama aTtaku / 31amy

exponential decline

E€KCIOHEHTHE 3HM)KEHHS / 3MCHIIICHHS

128

expose

1) poOuTH BUIUMUM, TTOKA3yBaTH; BUCTABJISTH, TIOKa3yBaTU

2) mijgaBaTy aii

exposure (to)

MOXJIMBE 3aJIy4€HHS (J10 YOI OCh)

extend

PO3IIMPIOBATH, 301IbIIIYBAaTH, HAPOILIYBATH

extensibility

PO3IIMPIOBAHICTh, MOXKIIUBICTh PO3IMIUPEHHS (HAPOIICHHS)

Extensible Markup

PO3IIMPIOBAaHA MOBA T1EPTEKCTY

Language (XML)

extension PO3IINPECHHS

extensively 3HAYHO, JIyX€, ITUPOKO

extent CTYIiHb, Mipa, 00CST, BEIMUYNHA
extent CTYIiHb, Mipa

external perspective

30BHIIIHINA ACIEKT

extract

BUOMpPATH, OTPUMYBATH

extreme programming

EKCTpPEMAJIbHE ITPOrPAMyBaHHS

F

facet aCIeKT, CTOpOHA

facilitate MOJICTIIYBATH

facilities 1) 3aco0u; 2) MOKIUBOCTI
facilities MO>KIIMBOCTI

failure mode CTaH BiJIMOBH

faint ClaOKuiA

fairly JIOCUTB, JI0BOJII

fake iApOOIIOBATH, TYPHUTH
fan BEHTHIIATOP

fancy HE3BUYANHHM

fault HOIIKOKEHHS, nedeKT, 301i
fault tolerance BiJIMOBOCTIHKICTh
fault-tolerance BiIMOBOCTIUKICTH

129

feature

BJIACTUBICTh, XapaKTEPUCTHUKA, OCOOTUBICTh

ferret out PO3ILIYKYBaTHU, 3HAXOAUTH
fidelity TOYHICTh

field ranysb, cepa AisSUTBHOCTI
file system daiinoBa cucrema

File Transfer Protocol
(FTP)

NpOTOKOJ nepeaanns (aiinis, mporokon FTP

financial database

0a3a gaHux J1si 00poOsIeHHs piHAHCOBOT 1H(pOpMAaIIii

financial dealings

(biHaHCOBI 000PYIKU

fine-grained APiOHOMOIYJIbHUI

firmware BMoHTOBaHe [13, mporpamHo-anapatsi 3acodu

fit between PO3TaIIOBYBATUCS MK, OyTH Ha MEePEeTUHI

fix 1) Bu3Havarw; 2) 3ahikcoByBaTH, 3aKPIILTIOBATH

fix a bug BUTIPABUTH MOMIIKY (YCYHYTH 30ii1)

flat panel display (FPD) | miockomanenbHUN AUCIUICH

flaw nedexT

flesh out KOHKPETH3yBaTH

flexibility THYYKICTh

flood 1) noBiHb, MOTIK HEMOTPIOHOT iHPOPMAITii, po3M. «DIyI»;

2) HaNOBHIOBATH, 3aTOILIIOBATH

flow of control

MOTIK KEpyBaHHS

flush 1) ouninyBaTu (Harpukiam, BMicT OydepiB ornepaTUBHOI
nam’sITi BiJl CTapuX JIaHMX); 2) CKUIATH (BMICT Kera abo
O0ydepa Ha AUCK)

foreign key 30BHINTHIH KTF0Y (y 0a3ax JTaHUX)

formatting nofanHs (iHpopmariii) y hopmari

fortunately

Ha IacTs

foundation

(dbyHIaMeHT, MiBaJIMHa, OCHOBA

130

fractal

dbpakrtan (reomerpudHa ¢popma, sika Moxke OyTH po30uTa Ha
OKpEeMI YaCTUHH, KOTPI € MPUOIU3ZHUMHU 3MEHIIIEHUMH
KOIISIMU IIJIOTO; (PpaKkTaau OMUCYIOTh TaKi 00’ €KTH

pPEaIbHOTO CBITY, SIK: TOPH, KOHTYPH O€periB, XMapu TOILO)

fragility Bpa3JIMBICTh
frame KaJp
framework CTPYKTypa
fraud 1axpancTBO

freehand drawing

MAJIFOBAHHS PYKOIO

frequently 9acTo

fulfill BUKOHYBATH, 3a{0BOJIbHATH (BUMOI'H)
full keypad MOBHA JIOTIOMIXKHA KJIaBiaTypa
fundamentals OCHOBH

funds oI, KOIITH, CyMa

furthermore 710 TOTO %, KPIM TOT0, OLIbIII TOTO
fuse KOMO1HYBaTH, IIOE€JHYBaTH

G

gain 3100yBaTH, JICTaBaTHU, OTPUMYBATH

game theory

TEopis irop

gap

nporajivHa (y 4oMych), Opak (40roch)

gas plasma display

razopo3psAaHUAN AUCIUIEN, TUIA3MOBUM TUCILICH

gas plasma technology

ra3opo3psaHa TEXHOJIOTIS

generalization

y3araJJbHCHHA

general-purpose

YVHIBEpCAIbHUI, 3aTAIbHOTO MPU3HAYCHHS

generic y3arajbHeHH
generic TUIIOBUW, CTAHJAPTHHUM, 3BUYAHUN
glitch porpamMHa IMOMUJIKa, PO3M. «TJTIOKY

global control structure

CTPYKTYpa ri100a1pHOTO KEPYBaHHS

131

go about

3aiimMaTrcs (YUMOCH), OpaTucs / B3ATHUCS (J10 YOI OCh)

go beyond BHUXOJIUTH 32 MEXKI

govern KepyBaTH

granularity piBEHb MOTYIBHOCTI (CUCTEMH), «TPAHYIISIPHICTH
granule rpaHyJia, YaCTUHKA

graphic display

rpadigyHui qucTUIeh

graphical user interface

rpadiunuii iHTepdeiic KopucTyBaya

graphics rpadika
rid elIiTKa, CITKa
p
gross BEJIMKUH, MaKPOCKOITIYHUH

gross-level component

MaKpOpIBHEBUM KOMITOHEHT

groundwork OCHOBa, 0a3a, hyHIaMeHT
H
hacking XaKepCTBO

hand-held computer

KUIIEHbKOBUN KOMIT FOTEP

handle

1) kepyBaTu; 2) MaTu cripaBy, 3aiimaTucs (IpooIeMor0)

hand-produced material

Matepial, o BUPOOIIAETHCS PYYHUM CIOCOOOM

hard disk

KOPCTKUM JTUCK, BIHUECTEP

hard drive capacity

00CsT)KOPCTKOTO JUCKY

hard drive, hard disk

KOPCTKUM JTUCK, BIHUECTEP

hardware

anapaTHe, TexHIuHe 3a0e3neueHHs 400 ocHaIeHHs (Ha BiJI-
MIHY B1J] IPOIPaMHOI0); €IEMEHTH KOMII I0TEpIB; CII.

«3anizo»

hardware team

rpymna po3poOHHKIB anapaTHOTO 3a0€3MeUeHHSI

hardware-based security

amapaTHUM 3aXKCT; 3aXKCT, 10 3a0e3Medy-

I0Th amapaTHi 3aco0u

132

harmful [IK1TUBUA

harsh ’KOPCTKHUH, CyBOpHUii

heat sink TEIUIOBIABITHUI pajiaTop (10 HOro 3aCTOCOBYIOTH IS
3amo0iraHHs MEePerpiBy MOTYKHUX IHTETPATTBHUX CXEM)

hence TOMY, 3BIJICH

heterogeneous reTepOreHHHM, HEOTHOPITHUM

hide (p. hid, pp. hidden) | xoBatu

hierarchically 1EpapxiqHO

highlight MiJIKPECIIOBATH, 30CepEKyBaTH yBary (Ha 4oMycCh), Haro-
JIOIIIYBaTH (1110Ch)

highlight MiJIKPECIIOBATH, BUALIATH, aKIICHTYBATH yBary

hinge on sth 3ayIeXaTH (BiJ 9OTOCh), pO3M. yIUpaTHCs (Y IIOChH)

historical data

perpocnekTuBHI AaHi (y 6a3ax gJaHUX — CYKYITHICTb J1a-

HUX, OTPUMAHMX 32 TPUBAIUHN NIEPIO/I, Yac)

hit (p., pp. hit) 3aBAaBaTH KON, YPaXKaTH
homogeneous OJIHOP1THU, TOMOT€HHHI

hook (into) MiIMUKATHCS (IO 9OTOCH)

host TOJIOBHA CHUCTEMa, XOCT-CHUCTEMa
host MICTHTH

hostile BOPOXKUI

huddle (together)

36upatu(cs) (pazom)

human error

CY6’€KTI/IBH8. ITIOMMIJIKA, ITOMUWJIKA JIFOANHN

Human-computer
interaction (HCI)

B3a€MOI[i$I JJFOAWMHH 3 MAallITMHOIO

human-machine

interaction engineering

TEXHOJIOTS B3aeMO/I11 JIFO-

JWUHHU 3 MAaIlITMHOIO

133

Human-Machine
Interface (HMI)

1HTEpPEIC «WII0IMHA — MaIlIMHAY,

JIIOTMHO-MAaIIMHHUK 1HTepdeic

hybrid database riOpuaHa 6a3a qaHux, 0a3a JaHMX 31 3MIMAHOK («T10-
PHUIHOIO») CTPYKTYPOIO
hypermedia rimepmeia, rinepcepenoBuiie (pO3MUPEHNN, TTOPIBHSIHO 3

TIepTEKCTOM, METO/T OpraHi3allii MyJbTHUMeIia-
iH(dOopMallii, y IKOMy, KpiM TEKCTY, MATPUMYIOTHCS TIe-
peXpecHI MOCWIAHHS 3 IHIIMMU TUIaMH JaHUX (B1I€0,

rpadika, 3ByK)

hypermedia database

rinepmeiiiHa 6a3a JaHux

hypertext

rineptekct (1) TexHomoris, 1o 3a0e3neuye NoIyK 3aJaHux
TEeM y TeKCTOBUX MAaCHBaX; IMOITYK 3a0€3MMeUy€eThCs BKITIO-
YEHHSIM y TEKCTH CTCIIIbHUX MTOKAKIHMKIB, 10 3BYThCS
rineprekcroumu nocunanuamu (hyperlinks) 2) Tekcr, 1mo

Ma€ TaKi TneprnocuIaHHs)

hypothesis

riroresa

I/0O parallel peripheral

napaienbHa nepudepiiiHa muHa BBEACHHS -

bus BHBECHHS

1/O port MOPT BBE/ICHHSI—BUBECHHS

ID (identifier) imeHTudikaTop

identical OJIHAKOBHM, TOTOKHUH, 11€HTHYHNIN

134

identical

OIHAKOBHI, TOTOXKHHUHN, 1I€HTUIHUI

identify BCTAHOBJIIOBATH, BUSBIISITH, BU3HAYATH

identity 1IEHTUYHICTh

identity 1) TOTOXHICTD, IICHTUYHICTD; 2) CIIPABKHICTh, ICTHHHICTB;
3) IHOUBITyAIBHICTH, 0C00a

if/whether qu

image 300paKeHHS

imitate IMITyBaTH

immaterial HeMaTepiaTbHUMA, HEICTOTHUH

immediately HeTaliHO, HEBIAKIIATHO

immovable HEPYXOMUH, HE3MIHHHMA

impart HaIATH, HalaBaTH

impedance mismatch

PO3Y3TOKEHICTh 1HTEP(ENCIB (PO3OIKHICTD

MDXK 1HTep(deiicamMmu 00’ ekTa 6a3u JaHUX)

implement

peanizyBaTH, 3/11ICHIOBATH, 3a0e31euyBaTH

implement

peanizoByBaTH

implementation details

JeTanl peanizarii

implication MiJTEKCT, 3MICT; T€, 1[0 MalOTh Ha yBas3i
implicitly HEOUYEBHIHO, IMILTIITUTHO, BCEPEANHI
imply O3HauaTH, nepeadavyaT, MaTH Ha yBa3i

impose (a constraint)

HaKJIagaTu (OOMEKEHHS)

improvement

MOJIIMIIICHHS, B/YTOCKOHAJICHHS

in a fashion

IIEBHUM YHMHOM, IIEBHOIO MipOIO

in diverse ways

PI3HUMU CIIOCOOaMU, TTO-Pi3HOMY

in loose terms

Yy 3araJlbHUX pucax; HCBU3HAYCHO

in terms of

B MTOKA3HUKAX, B OJJMHUIISX, B IEPEPAXyHKY (Ha IIOCh)

in terms of

qyepes, y BUTIISI

135

in turn

IMo4Ycprono, HOCJIi,IIOBHO, CBO€I0 4YCPIroro

inch

IIIONM

incorporate

00’€THYyBaTH, MICTUTH y CBOEMY CKJIadl

independent operation

ABTOHOMHE (He3aJIeXxHe) QyHKL1OHYBaHHS

index of performance

MOKa3HUK €()EeKTUBHOCTI / MPOAYKTUBHOCTI

indirect attack

HCTIpsIMa / OIMOCCPpCAKOBAHA aTaKa

industrial control panel

I[MaHCJIb KCPYBAHHA, ITAHCIIb l'IpI/IJIaI[iB

industry

IHAYCTpIs, Taly3b

Infectious

1H(1KOBaHUH, 3apa3Huit

inference rules

MpaBUiIa BUBEJEHHS (BUCHOBKIB B €KCIIEPTHUX CUCTEMAX)

infiltrate

IMPOCOTYBATUCH, ITIPOHUKATHU

information and
communication
technology (ICT)

iH(bOpMarriiiHo-

KOMYHIKaI[ii{H1 TEXHOIOT11

information engineering

1H(opMalliitHa 1HXeHepis, IHPOTEeXHIKa

information hiding

MPUXOBYBaHHA 1HPOpMaIIii

information system (IS)

1H(popMalliiina cuctema

inherently 3a CBOEIO CYTHICTIO, Y CBOTH OCHOBI; Bil IPUPOIH
inheritance 1) ycmankyBaHHS; 2) criaaiiuHa; 3) crajgok

inject BIIOPCKYBAaTH, BBOJIUTH, BITyCKATH

innocuous Oe3IeuHni, HEIKIJIUBUN

input variable

BXI/IHA 3MIHHA

input/output (1/0)

interface

iHTepdeiic BBEICHHI-BUBEACHHS

installation team

I'pyiia BCTAHOBJICHHS

instead (of) 3aMiCTh
instrument npusian
integer IT1JI€ YHCTIO

136

integer number

L[lJI€ YUCIIO

integrate

00’€/IHYBaTH, IHTErPYBATH

integration

1HTerparis, moeTHaHHS

integration testing

TECTYBAaHHS B3a€MO/I1i KOMIIOHEHTIB CUCTEMU

integrity ITICHICTH (TaHUX)

intend NpU3HAYATH, TUIAHYBATH, MATH HAMIP
intend pU3HAYaTH

intent HaMip

intent HaMip, MeTa

interaction B3a€MOJIIS

interaction diagram

Jiarpama B3aeMOJIi1 (3arajgbHa Ha3Ba Jiiarpam

UML, Ha SIKMX pe3eHTOBAHUN JUHAMIYHUI

MOTJISI] HA CUCTEMY 3 MOIJIAY 00’ €KTIB 1 OB1IOMJIEHb,
SIKUMU BOHU OOMIHIOIOTBHCSI; IPAKTUYHO
BUKOPUCTOBYETHCS a00 jAiarpama Koomeparii,

a0o JiarpamMa MmocJiI0BHOCTI)

Interaction overview

diagram

Jiarpama orjisiTy B3aeMoii

interactive aspects

IHTEPaKTUBHI aCTIEKTH

interactivity

IHTEPAKTUBHICTb

interchange

1) oOmiHtOBaTH(CA); 2) MEPECTABIATH, MIHATUA MICIISIMU

interest rate

cTaBKa 0AaHKIBCHKOI'O BIJCOTKA

interface

iHTEpdeiic, B3aEMOis, B3aEMO3B’ SI30K

interface point

iHTEepdeiicHui By3011

intermediate POMIKHHIA
internal BHYTPIIITHIHI
internal bus BHYTPIIIHS IIHHA

137

International
Organization for
Standardization (ISO)

MixHapoHa opraHizallis 31 CTaHaapTH3aii

Internet Relay Chat

cHCTeMa J1aJIOrOBOro CUIKyBaHHs [HTepHEeTOM

interoperability

(G yHKL10OHAIbHA CYMICHICTh, MOKJIUBICTh B3a€MOII1

(mporpaMHUX Ta anapaTHUX BUPOOIB PI3HUX MMOCTAB-

HHUKIB)
interplay B3a€EMOTISI
interpret TIYMa4YUTH, OSICHIOBATH, IHTEPIPETYBATH
interprocess MeXaHI13M B3aEMOJII1 MIXK ITpOIleCaMu

communication

mechanism

interrelate

1) Oyt B3aEMOMIOB’ I3aHUM; 2) B3aEMOJIISTH

interrupt service routine

nignporpama o0poOJIeHHs epepuBaHHs

intersection

MEPETHH, TOYKA, JIIHISI IEPETUHY

intruder

00068., 1O HE3aKOHHO BACPJACs; 3JJTaMHHUK

Intrusion Detection
System (IDS)

CUCTEMA BUSIBIICHHS (MEPEKEBUX) aTaK

intrusive HAOpUATMBUN, HATOKYIJTUBUIH

invalid HEIPaBWIbHUHN, HETIHCHUH, ITOMUIKOBUM

invariably HEOJIMIHHO

inventory 1) iHBeHTapu3aIlis; nepeodik; 2) HasBHI TOBapH; TOBAPHO-
MaTepiajabHi 3aracu

inventory IHBEHTapu3aIlisi, 00JIiK TOBapy

inventory 1HBEHTapu3allisi, 00JIIK TOBapy

inversion 1HBEpPCis, 3BOPOTHE MEPETBOPECHHS

investigation

PO3CIiIyBaHHS

invoice

paxyHOK-(akTypa

138

invoke

BUKJIMKATH, 3aITyCKaTH, aKTUBI3yBaTH Mporpamy

involve BKJIFOYATH B ce0e, mependavyaTu

involve nependayaT, OyTH OB’ I3aHUM

involved CKJIQJHUM, 3aTUTyTaHU (MEXaHi3M)

irreversibility HE3BOPOTHICTH

isolation 130JIbOBaHICTh

Issue MUTaHH, podiiemMa

issue npoOsema, TUTaHHS

iterative ITepaTUBHUI; TOM, IO MIOBTOPIOETHCS, TTIOBTOPIOBAHHMA

J

judgement CY/DKCHHS, IyMKa, OIlIHKa

judgement 1) cy/uKeHHS, JyMKa, TOTJISI, OIiHKA; 2) 3OPOBHIA TUTy3]I,
PO3CYIMBICTh

K

keep track of BIJICJTIIKOBYBaTH

kernel sa1po (JacTHHA OTepaIliiHol CUCTEMH, 1110 BUKOHYE
HaWOLIbII BaXKJIUB1 3aBJAHHS)

key drive dnem-nam’aTh

key entry KJIaBIIlIHE BBCICHHS

keyboard KJaBiaTypa

keylogger Jorep KiaBiaTypu (mporpama 4 anapaTHUN TPUCTPIH, 10
pEeECTPYE KOKHE HAaTUCKaHHS KJIABIII HA KJIaBiaTypi
KOMII F0TEpa)

keystroke HATUCKAHHS KJIABIIIH Y1 KHOIIKU

knob KyJIICTa Py4Ka, KHOTIKA

L

139

lack

OpakyBaTH, He BUCTa4yaTH

land information system

nanamadTHa iHGopMalliiiHa cucTeMa

large-scale

computerized system

BeJIMKa 00YHMCIIIOBaJIbHA CHCTEMA

latency 4ac OYiKyBaHHS, 3aTPHMKa
launch 3aIyCKaTH, [IOYMHATH

lay (p., pp. laid) KJIACTH

layered OaraTopiBHEBHUH, OaraTomapoBuii

leakage protection

3aXHCT BiJ BTpaTu

legacy system yCIaJKOBaHa cHcTeMa (CUCTeMa, IO He 3a/I0BOJIbHSIE
BHUMOT, aJlé BUKOPUCTOBYETHCS YEPE3 CKIIAIHICTD ii
3aMIHHM)

legitimate PO3YMHUM, IPUHHATHUIN, OOTPYHTOBAaHUI

legitimately 3aKOHHO, OOIPYHTOBAHO

level of detail piBeHb JeTamizarii

lever BAXUIb KEPYBaHHS, PETYJIIOBaHHA, PYyUYKa, PYKIB s

life-span JIOBIOBIYHICTH

linear TiHIAHUT

linear JTHIHHUH

linearity THIAHICT

linearization JiHeapu3allis

link 3’€IHyBaTH, 3B’SI3yBaTH, CIIOIyIaTH

liquid crystal solution

PIIKOKPUCTATIYHUN PO3UHH

liquid-crystal display
(LCD)

piakokpuctamiuamii quctuieit / PK-nucreit

listing

nepetiK

live performance

BHCTaBa HA>XHUBO

live presentation

MIpe3eHTAIlisl HAKUBO

140

load

3dBAHTAXKYBATH

local area network

JoKanbHa (oO0uncoBanbHa) Mepexa, JIOM

(LAN)

locally JIOKaJIbHO, Y MIEBHUX MeXax abo Maciiradax; TyT: y He3Hay
HOMY KOJI1

lock 3aMHKaTH, OJIOKYBaTH

lock (out) OJIOKYBaTH, BiIMUKATH

log KypHaJ peecTpartii

log in BXOJIUTH B CUCTEMY, PEECTPYBATUCS

log in pEECTPYBATHCS B CUCTEMI / MEpEKI

log out BUXOJIUTH 13 CUCTEMH / MEPEXKI1

logical grouping

JIoT1YHA Tpyma

logical view JIOT1YHE MPeICTaBICHHS

long-range TPHUBAIINI

loop diagram KOHTYpHa cxema

loop gain KOEQIIIEHT IMiICHICHHS 3aMKHEHOT'0 JIAHITFOTa

low(high)-level design

HU3bKO-, BUCOKOPIBHEBUI MPOEKT

lumped parameter

30CEpEIKEHUI MapaMeTp

M

machinery

yCTaTKyBaHHA (MeXaHI4He), 001 JHAHHS

main memory

ornepaTuBHa (TOJIOBHA) MaM’SITh

maintain control

HiATPUMYBATU KOHTPOJIb

maintainability

1) BIAHOBIIIOBAHICTD; 2) 3pY4YHICTb CYIIPOBOAY

(mporpamMHOTro 3a0€3MeYeHHs)

maintenance

CYHpOBIiJ, MATPUMKA, €KCIUTyaTallisi, TEXHIYHE

00CIyroByBaHHs

maintenance

TEXHIYHE 00CITyTOBYBaHHS

major

OCHOBHMH, TOJIOBHUU

141

majority OUIBIIIICTD

make sure MEPEKOHATHCS, IEPECBITUNTHUCS

malfunction 1) HecnipaBHA poOOTa, HEMpaBUIbHE PYHKIIIOHYBAHHS; 2)
HETPaBUIILHO MPAIIOBATH, HE CIIPAI[bOBYBATH

malware IIKIJIJTAB1 TTPOTPaMHU

manage KepyBaTH

management VIPaBIIHHS, KEPYBAHHS

management YIPAaBIIHCHKA / aAAMIHICTpaTUBHA 1H-

information system

dbopwmarriitHa cuctema

management reporting

CUCTEMa yMPaBIIHCHKOI 3BITHOCTI

system

manipulate MaHIITyJTFOBAaTH, KEPYBATH, TOBOIUTHUCS (3 MAITUHOIO)
manipulate MaHIiyIF0BaTH

manual MOCIOHUK; JOBIHUK, MOKAXKYUK; MAPYIHUK

manufacturing database

TEXHOJIOTIYHA 0a3a JaHuX

manufacturing plant

BUPOOHUIITBO, MIITPUEMCTBO

map BiJI0OpaXkaTH(cs)

map point IUIaH / cXeMa MyHKTIB / KOOPAHHAT
mapping BIIOOpaKEHHS

market research BHUBYCHHS KOH IOHKTYPH, CTaHy PUHKY
market share NUTOMA Bara JaHOTO TOBApPY HAa PUHKY
master TOJIOBHUH, TIPOBITHUN

master system

IOJIOBHA, OCHTPAJIbHA CUCTCMaA

mastermind a ring

KCPYyBAaTH 3JIOYMHHUM YI'PYITYBAHHAM

match BIMOBIIHICTE, 30Ir

maturity PO3BUHEHICTH

meaningful 3HAY YU

measure 1) mipa; 2) BUMiproBaTH, OI[IHIOBATH, BU3HAYATH

142

measure 1) moka3HUK, KpUTEPIii; 2) BUMIPIOBATH

media 1) Oynp-sxa dopma iHpopMartii (ayio-, BiaeoiHdopmarris,

aHIMaIlisg TOIIO) 2) ayAioBi3yalbHE CEPEIOBHIIEC

media control tools 3ac00M KepyBaHHS ay/Ii0Bi3yaJbHUM CEPEIOBUIIEM
media file MyJIbTUMENIHHNNA (aiti, Mesia dhan

media player MeTiarieep

mediate OyTH TTOCEpEeTHUKOM, OyTH CITOTYIHOIO JIAHKOIO
mediating construct NPOMIKHUHN CTPYKTYPHUI KOMIIOHEHT

medium (pl. media) 1) 3aci6 2) cepenosuie 3) Hocii (iHdopmarrii)

meet the requirements BiAIIOBIIATH BUMOraM

metadata MeTa JIaHi (JaHi 3 OIMMCOM 1HIINX JIAHKX)
metamodel METaMO/Ie)b, MOJIEIb BUCOKOT'O PIBHS
meteorology METEOPOJIOTis

Microsoft Transaction | cepsep Tpan3akiiiii kopropaiii Microsoft
Server (MTS)

minimize MiHIMI3yBaTH, 3MEHIITYBaTH

miscreant 3JI011H, HET1AHUK

misuse HETpaBUIIbHE 3aCTOCYBaHHS / BAKOPUCTAHHS
mitigation MOM’SIKITIEHHS (3ryOHMX HACII/IKIB)
modularity MOJYJIbHICTh

monetize MEepEeTBOPIOBATH HA TPOIIIi

monitor MOHITOP

monochrome MOHOXPOMHHMI, OTHOKOJIIPHUI, OJHOTOHHUI
motherboard MaTepUHCHKA I1aTa

mouse MHIIA

move data nepecuiaTu AaHi / iHpopMarrito

msec (millisecond) MiTiCEeKyH/Ia

multidisciplinary HoJITeMaTHYHUI; OaraTonpodiIbHUI

143

multimedia

MYJIbTUMEIIAHI 3aC00H, MyJIbTUME/T1a

multimedia application

1) MynbTHMeEniiiHA porpama; 2) 3acTOCyBaHHs

MYJIBTUMEIIMHUX 3aC001B

multiple

OaraTokpaTHUM

multitasking

0araro3agayHiCTh

multi-tasking operating

system

OaraTo3ajayHa orepailiiiHa cucrema

multi-user operating

system

OaraTokopucTyBallbKa orepalliifHa cucTeMa

N

N

named constant

IMEHOBaHa KOHCTAHTAa

National Electronics
Manufacturers
Association (NEMA)

Haronains-
Ha acoIfiallisi BAPOOHUKIB €IEKTPOYCTaTKyBaHHS,

acomarigs NEMA

natural science

MPUPOA03HABCTBO; OJIHA 3 MPUPOIHUYNX HayK ((i3uka,

X1Mis)

navigational control

HaBIraliHUA KOHTPOJIb

navigator

HITYpMaH, HaBIraTop

networkable

TaKMil, 0 MiJI’€AHYETHCS 10 KOMIT FOTEPHOI MEpEexK1

network-centric

deployment view

MCPCIKCUCHTPUYIHC IIPCACTABJICHHA pOSMiHleHHH

networking 1) poboTa / criiiKyBaHHS B MEPEXKi; MEPEKEBUN PEIKUM
node BY30J1
non-linear HEeJIIHIAHUHI

nonrepudiation

HEMOKJIUBICTh 3aIlICPCUCHHA aBTOPCTBA

notation

CHUCTCMA YUCJICHHA, CUCTEMA ITIO3HAYCHD, 3aIlIUC

144

notation

CHUCTCMaA IIO3HAa4YCHb

Notation HOTAllisl, CUCTeMa M03HA4Y€Hb, Ha0Ip CUMBOJIIB 1 MPABUJII JJIS
3aMnCy CUHTaKCUCY
NUMEerous YUCJICHHUU

object database model

MOJIEb 00’ €KTHOT 043U JTaHUX

object diagram

niarpama 00’ €KTiB

Object Management
Group (OMG)

rpyna KepyBaHHsS 00’ €KTaMH

object oriented

paradigm

00’ €KTHO-OpIEHTOBaHA Mapagurma

object-enhanced

00’ €KTHO-PO3IIUPEHU I

objective MeTa
objective MeTa
objective MeTa

objective function

IIb0Ba (DYHKITIS

Object-
modellingtechnique
(OMT)

MeToq 00’ €KTHOTO MOJIETOBAHHSA

object-oriented design

00’ €KTHO-OP1EHTOBAHE MPOEKTYBAHHS

object-oriented

programming

00’ €EKTHO-OpIEHTOBAHE MPOTPAMYyBaHHS

Object-oriented

software engineering

00’ €KTHO-OpIEHTOBaHA MPOrPaMOTEXHIKA

(OOSE)

obscure IPUXOBYBATH, POOUTHU HETIOMITHUM
observable CTIOCTEPEKYBaHHIA

occasionally 1HO/I1, Yac Bif yacy

occur TpaIuIsITHCS, BIAOyBaTUCSA

145

offer IPOIIOHYBATH
offer MPOMOHYBATH
office yIPaBJIiHHS YIIOBHOBa)KEHOT'O 3 MUTaHb iH(GOpMaIIii

office activity

odicHa onepailisi, BU opiCHOI JiSTBHOCTI

office information

system

odicHa iHpopmaIliifiHa cucTemMa

off-shoring

MIPaKTUKA MepeMillieHHs po00d0i Oa3u KOMITaHii B 1HIITY

Kpainy

on-the-fly encryption

orepaTuBHE WU(pyBaHHs, IIM(PPYBAHHS B peaJbHOMY 4acl

open-ended

3 MOMJIMBICTIO PO3IIMPEHHS, PO3IIMPIOBAHUIN

operate

KEpYBaTH, YIIPABIATH

operating humidity

poboya BOJIOTICTh

operating system

orepailiiiHa cucrema

operating system call

BUKJIMK OTIEpaIliifHOI CUCTEMU

operating temperature

poboua Temreparypa

operational

orepaniiHuii, onepaTUBHUN

operational

eKCIUTyaTaliiHun

operational data

1) poboui nani; 2) naHi moa0 GyHKIIOHYBaHHS CHC-

TEeMH, eKCILTyaTalllliHi 1aHi

operational database

orepailiiina 6aza gaHuX

operational decision

OIlepaTUBHE PIIICHHS

operational security

Oe3meka B eKCIUTyaTallil

operational workflow

NOTIK (PYHKIIIOHAJILHUX OIepariii

operator interface

TepMiHaJ OIepaTOPChKOro iHTepdeiicy,

terminal MOJIYJIb 3B’SI3KY OIlepaTopa 3 00’ €KTOM
optimize OINTUMI3YyBaTH

option BapiaHT, BEPCisi, OMIIis

orderline KUTbKICTh HaliMEHYBaHb Y 3aMOBJICHHI

146

organize

OpraHi3oByBaTH, CTBOPIOBATH, BIIOPSIKOBYBATH

out of date

3acTapuini

outbreak

aTakKa

output variable

BUX11HA 3MIHHA

outsource 1) BinmaBatu poOOTY CTOPOHHIM, IEPEBOIUTH
BUPOOHUIITBO
B IHIIIMK pErioH; 2) 3ajydaTH 30BHIIIHIN pecypc

overall MOBHUH, (Y)BeCh, 3arajJbHUMN

overhead 1) ciry»x00Bi, MPOTOKOIBHI CUTHATHU 200 JaHi; 2) BUTPATH
00UYHCITIOBATILHUX PECYPCIB; 3) HAKJIAHI BUTPATH

overlap nepeKkpuBaTH(Csl), 9aCTKOBO 30iraTucs

overlap nepeKkpuBaTu(cs), 4aCTKOBO 301raTucs

override 1) mepeBu3HaueHHs; 2) 00Xia; 3) ckacyBaHHS (KOMaH]IN)

overtake 1) Ha3mOrHATH, HAJIONY>KUTH; 2) BUIIEPEAUTH

overview 3arajbHe ySIBJICHHS, 3arajibHa KapTHHA

overwriting nepesanyc

overwriting repe3anuc

owner BJIACHUK

ownership IpaBO BJIIACHOCTI

P

package diagram

Jiarpama makeTiB

packaging

IMaKyBaHHs

packet queue

yepra MaKkeTiB

page layout program

mporpamMa KOMIIOHYBaHHSI CTOPIHOK

paradigm

1) mapagurma; 2) 3pa3ok, €TajJoH

parent diagram

MOPO/KyBaJIbHA JliarpamMa, JiarpaMa rmepiioro piBHS

partial

YaCTKOBUH

particular

KOHKPETHHUH, TaHUI

147

particular

KOHKPETHHU U

particularly AyXe, HaJ3BHYaitHO, 0COOJIUBO
particularly 1) ocobmuBO; 2) 30KpeMa
partitioning O30T, JEKOMIIO3HUITIS

party CTOpOHA, CY0’ €KT, yYaCHUK

passive matrix display

PK-expan / nucruieit 3 macHBHOIO MaTPHIICIO

PAT = PaT= P&T

1) (picture and text) — «MaIIOHOK 1 TEKCT», PEKUM ab0
¢ynkuis PAT 2) program association table — TaGnuiis 3

nepepaxyBaHHsAM MIPOrpam MNOTOKY Ta iX 1IeHTU(DIKaLsA

pattern 11abJI0H

payload iHpopMalliliHe HATTOBHEHHS
payment cruiara, rmiaTix

penetrate [IPOHUKATH

penetration testing

BUNPOOYBAaHHS HA MOXJIMBICTh TPOHUKHEHHS 70

CHUCTCMHU, TCCT HA 3aXHCT BiI[HGC&HKHiOHOBaHOFO AOCTYITY

perceivable BiUyTHUH

perform BUKOHYBaTH

performance 1) pobora, GpyHKIIOHYBaHHS; EKCIUTyaTallliiH1 BIaCTH-
BocTi; 2) KK/

performance 1) ekcrutyarariiiti / po6odi XapaKTepUCTHKHU; 2) BUMOTH JI0

specifications XapaKTePUCTUK

performer BUKOHABEITh

perhaps MOJKIIUBO

permeate MPOXOJIUTH KPi3b, IPOHUKATH

persist 3anumaTucs, 30epiratucs, MpoJoBKyBaTH ICHYBaTH

personal identification
number (PIN)

0COOUCTHH 1IeHTH(IKAIIITHII

Homep, [1TH-xon

personnel database

0a3a JaHUX MepCcoHaly, KaapiB

148

perspective

pakypc, Touka 30py, aCleKT

perspective

OaveHHs!, KOHIIEMIIis, TOYKa 30py

pertinent to sth

TaKuH, 10 CTOCYETHCS YOTOCh, BIATIOBITHUN

phishing ¢immHr (pi3HOBUA [HTEpHET-IIaXpaiicTBa — BUMUTYBAHHS
KoH}iAeHIIIiHOT 1HGOopMaIlii 3 JOITOMOI0I0 3aIIUTIB,
10 MAIOTh BUTIISA OQIIIHHUX JIMCTIB)

phrase BHUCJIOBJTIOBATH

physically Gb13u4HO

pie chart CEKTOpHa, KpyroBa jiarpama

plain text He3amnppoBaHui / HE3aKOIOBAHUH TEKCT

plant 1) BcTaHOBIIOBAaTH, pO3MILLYBATH; 2) XOBaTH

platform independence

HE3aJIeKHICTH BiJl 1aThopMu

platform-dependent

(platform-specific)

3aJIeXKHUN Bl TU1aTGopmMu

plausible IIEPEKOHIMBHH, BUITPABIaHUH

pleasing IPUEMHUT

point YHKT

point data KOOPJIMHATH TOYOK, JJaHi PO KOOPIUHATH
poisoning TYT: 3MiHa, ICYBaHHS, BUKPUBJICHHS

polarizing material

NOJIApU3ALIITHUN MaTepial

ici 3aX0U
policies
polish nuTiyBaTH; I€TAIbHO OMPAIlbOBYBATH; BIIOCKOHATIOBATU
political science HOJITOJIOT IS
pollute 3a0pyIHIOBATH

population trends

TEHJICHIII1 3MIHU CTPYKTYPH Ta KUIbKOCT1 HaCeJIeHHS

pop-up ad CIUTMBAIOYE BIKHO (HAIIPHUKIIAA, B IHTEPHET-PEKIaMi)
port NEePEHOCUTH (HaImp., Mporpamy 3 OJHIET MAITUHK HA 1HIITY)
port [IEPEHOCUTH, alallTyBaTH

149

port

nopT

porting

MOpTyBaHH:A (y MpOrpaMyBaHHI IOPTYBAHHS PO3YMIIOTh SIK
ajanTariiro mporpamu abo i 4acCTUHH 10 poOOTH B IHIIIOMY
CepeAOBHII, BIAMIHHOMY BiJl TOTO, JUIsl IKOTO BOHa Oyra

HarycaHa)

post-relational database

MOCT-peNsIiiiHa Mojeb 0a3u TaHUX

model
power CHWJIa, TIOTYXKHICTh
power cord IIHYP JKUBJICHHS

power management

KCPYBAHH:A CIICKTPOKHUBJIICHHAM

power plant

1) cuioBa ycTaHOBKA; 2) €IEKTPOCTAHIIS

power supply

OJIOK JKUBJICHHS

powerful

MIOTYKHUHI

Power-over-Ethernet

(PoE) equipment

yCTaTKyBaHHs / 00IaIHAHHS

*uBJieHHs yepe3 Ethernet

practice 1) TexHOMOTIA, TPAKTHKA; 2) METO/I, CIIOCiO
practices THCTPYKIIIT

prank KapTH, MyCTOII, BUTIBKU

precaution 3armo0KHUH 3aXi]1

precede nepenyBaTu

precedent MIPEIEICHT; TYT: TOMEePEIHE 3HAUCHHS

preceding MoTepeTHIN

precisely TOYHO

pre-date nepenyBaty, Bil0yBaTHCs, CTaTUCS (TIepe] YAMOCH)
predefined Harepe] BABHAYCHHMA, CTaHTapTHHUM

predictor variable

MPEIUKTOPHA 3MIHHA, MPOTHOCTUYHUHN TapaMeTp

preexisting

SAKUH ICHYBaB paHillie; 1110 ICHY€

150

premium-rate telephone

number

TeneOHHMI HOMEp MpUBiIeHOBaHOTO Tapudy, HOMEp 3

premium-rapudom

prerequisite

1) mepenymoBa; 2) HEOOX1THUM K TIEPETyMOBa

presenter BEIYy4YUH

preventio n 3ano0iraHHs

previously paHirie

primarily TOJIOBHUM YHHOM

primarily TOJIOBHUM YHHOM; TIEPEIyCiM

primary key nepBUHHUHN KITto4 (y 6a3ax JaHuX)

print JAPYKyBaTH

prior TIOTICPETHIN

priority NPIOPHUTET, TOPSAOK YEPTrOBOCTI

privacy KOH(D1ICHIIIMHICTH / TPUBATHICTH IEPCOHATBHOT

1HbOopMmartii

privilege escalation

PO3LIUPEHHS NMPUBLICIB

privilege level

PIBEHb MPUBLIEIB, PIBEHb JOCTYITY

privileged operation

IpuUBLIEiOBaHa orepanis

probabilistic

(stochastic) model

1/iMOBIpHICHA (CTOXAaCTHYHA) MOJIEITb

probability distribution

PO3MOJILT IMOBIPHOCTEM

probably

HMOBIpHO

proceed

1) BimOyBaTucs; 2) mpoaoBKyBaTH(Cs)

process model

MOJCIIb ITPOUeCy

processing device

MPUCTPiil 00poOIeHHS 1HpOpMaITii

produce CTBOPIOBATH, BUPOOJISATH
proficiency JIOCBITYEHICTH, YMIHHS, BIIPaBHICTb, MPO(ECIitHICTh
profile podiib, CYKYIHICTh MapaMeTPiB KOPHCTyBadya

profile diagram

npodinorpama

151

Profit

1) mpubyTOK, 3UCK, BUTO/a; 2) 1aBaTH MPUOYTOK

programmable function

key

porpamMoBaHa (pyHKIIOHAJIbHA KJIaBila

progression

NPOCYBaHHSA, PyX yIepe, nporpec

proof

HETIPOHUKHUHN, HETPOOMBHUM, MIITHUN

propagation

IMOIIUPCHHA, IICPCAaBaHHA

property

BJIACTUBICTH

property

BJIACTUBICTH

proprietary information

ciryx60Ba iH(popMailis; iHhOpMaIis, 0 € BIACHICTIO
¢bipmu, opranizaiii; koHdpiaeHIIHHA 1HQOpMarttis (hipmu,

oprasizariii)

prosecution

CyJIOBE MepeCiliTyBaHHs

protection failure

BiI[MOBa 3aXUCTY

protection of

3axucT 1HpOopmarllii

information

prototyping MaKeTyBaHHS, PO3POOIECHHS MPOTOTHUITY

prove 1) noBoaWTH, 3aCBiAUYBATH, ATBEPIKYBATH; 2)
3aCB1IYYyBaTH, MIATBEPHKYBATH JOKYMEHTaAMH

proven JOBEJICHU, BUIPOOYBAaHU, epeBipeHUi

provide 3a0e3mnedyBartu, HaJaBaTh

provide 3a0e31euyBaTu

proximity OJIM3BKICTH; CXOXKICTh

proxy CEpBEP-TTOCEPETHUK, ProxXy-cepBep

purpose MeTa, Hamip

Q

quantity BEJIMYMHA, TTapaMeTp

query language

MOBa 3aIUTIB (MOBa KEpYBaHHS JIAHUMHU)

query result

pe3yabpTaT 3auTy

152

R

radio frequency

interference (RFI)

pazio3aBaau, pajiio4acTOTHI HABEICHHS

Random Access
Memory (RAM)

OIcpaTuBHA HaM’HTB, OHepaTI/IBHI/Iﬁ

3anam’aToByBalibHUNA nipucTpiit (O3I1)

random variable

BUIIAIKOBA 3MIHHA

randomness BUIIAJIKOBICTb, 1/IMOBIPHICTh

rate 1) TemI, MBUAKICTD, YACTOTA; 2) KOePIIieHT; 3)
IHTEHCUBHICTb

rating 1) mapametp, po3paxyHKOBa BeJIMYMHA; 2) MOTY>KHICTb,

HOMIHAJIbHA XapaKTePUCTUKA

Rational Unified

parioHaJbHUM YHI1(IKOBAaHUN MPOIEC

Process (RUP) (po3pobiteHH:)

reach 1) po3max; 2) chepa (BruuBy); 3) mpocTip, MPOTSHKHICTE; 4)
paxiyc aii

react with BCTYIATH B PEAKIIiO (3 YMMOCH)

read back 1) 3unuTyBaTH MIOKHHO 3amMKcany iHPpOpMaIliio; 2) MOBTOPHO
3YUTYBATH

read lock OJIOKYBaHHSI 3UUTYBaHHS

real number IICHE YUCIIO

real-time clock

TOAWHHHK PCAJIbHOI'O HacCy

real-time operating

orepalliifHa CUCTeMa peaibHOro 4acy

system

reasonable MPUHHATHUH, MiIXO0XKHH, aJleKBaTHUH
reasoning MUCJICHHS, MipKYBaHHS

recast 3MIHIOBATH, IEPEPOOIIATH

receiver npuiiMay

153

recent OCTaHHIN, HAMHOBIIINN

recent OCTaHHIM, HOBITHII

reclassify peksacudikyBaTH, 3MIHIOBATH KJIacu(iKalliio, IEPEBOTUTH
710 1HIIIO1 KaTeropii, meperpymnoBaTu

recognition 1) Bu3HaHHS; 2) y/BIi3HABAHHS, PO3ITI3HABAHHS

recorded presentation

3aliMcaHa HpGSGHTaHiH

recover BiJTHOBJTIOBATH(CS)

recurring TaKuH, 110 MOBTOPIOETHCS, IEPIOAUIHHUM,

reduce 3MEHIIIYBaTH, 3HIKYBATH, TIOCTA0IIOBATH

refer Ha3WBaTH, MIO3HAYATH

refer (to) 1) crocyBatHcs; 2) Ha3UBATH

reference 1) naBaTu mocwiIaHHs, MOCWIATUCS (HA 1IIOCh); 2) MOAaBaTH
y BUJISIA1 TaOJIHIh

refill 1) moroBHEHHS; 2) TIOIMIOBHIOBATH

refinable IO MifJIArace aeTamisarii

refinement BIOCKOHAJIECHHS, HIABUIIIEHHS SIKOCTI

regardless of

HE 3BEpTarouu yBaru (Ha 1110), mompu (Te, 110)

register with an Internet

site

pEECTpPYBATHUCS HA ITHTEPHET-CaNTI

reinforce, enforce

M1JICUTIOBATH, TOCUITIOBATH, 3MIITHIOBATH, 301IbIITYBATH

reject

HEe IPUNMAaTH, BIAKUIATH

relation

MaTeM. BiIHOIIIEHHS

relation(ship)

(B32€MO0)3B 30K, 3QJICKHICTh, CITIBBITHOIIICHHS

Relational Database
Management System
(RDBMYS)

CUCTEMa KepyBaHHS PEIAIINHOI 023010 TaHUX

relational database

model

pensiiifHa Mojiesib 0a3u JaHUuX

154

relative BITHOCHUH, MOPIBHSUIBHHMA, BiIOBIIHHH

relative timing BiTHOCHA CHHXPOHHICTb, Y3TO/KEHICTh y Yaci

relatively BITHOCHO, ITOPIBHSIHO

release 1) BUBLIbHEHHS, PO30JIOKYBaHHS; 2) BUBLILHATH(CS)

release 1) myOnikaris; 2) HaJaHHS

relevant TaKHil, 1[0 CTOCYETHCS (TaHOrO MUTAHHS, CIIPABH), pelie-
BAHTHUM

relieve M030aBIISITH, 3BUILHATH

remain 3aITAIIIATUCS

remain undetected 3aJIMIIATHCS HEBHUSIBIICHUM

remediation BUIIPABJICHHS, TYT: JIIKBIyBaHHS HACIIIKIB

remote BlJUTaJICHUH, TUCTAHI[IHHUN

remote access BIJITAJICHUI JTOCTYTI

render (y cniosy4eHH1 3 TPUKMETHUKOM) CIIPUYMHSITH TIEBHUIN

CTaH, pOOUTH

repel BixOuBaTH

represent NpPEeCTaBIISATH, IPE3EHTYBATH
representative pEICTaBHUK

request poOUTH 3amuT

requirement BUMOTa

reservation pe3epByBaHHS, OPOHIOBAHHS
reside nepedyBaTH, MICTHUTHCS
reside TYT: TOJSITATH

resilience CTIHKICTh

resistant CTIMKMH

resistant CTIMKHM, MILHUHI

resolution PO3/IiTbHA 3JaTHICTh
respectively BiIIOBITHO

155

response time

gac BIJIF'YKY (4Yac, MOTPIOHUN KOMIT IOTEepY JJISI BIIO-

BiJll HA 3aIIUT)

responsibility B1JIMOB1TAJIBHICTD

responsible BiAIOBITATIbHUAN

responsible BiJIITOBIAIbHUI

responsible BiAIOBITAJIbHUAN

restrict O0OMEXyBaTH

restricted OOMEKEHUIT

result in MaTH pPe3yJIbTaToM (I10Ch), 3aKiHIyBAaTUCS (YMMOCH)
retain yTpUMYBaTH, 30epiratu

retire TYT: BUAQISATH

retrieve BUOHMpaty (iHPpOpMaIito 3 mam’sTi)
reusability MO>KJTMBICTH TIOBTOPHOTO BUKOPHUCTAHHS
reveal MOKa3yBaTH, PO3KPHUBATH

revenue J0X171, MPUOYTOK, BUPYUKa

review MIEPEBIPATH; OIJISIIATH; PELICH3YBATH

risk-based security

TECTYBaHHS 3aXUIIEHOCTI, 110 0a3yeThCs Ha

testing OIIIHIOBAHHI PU3HUKIB

robustness MIIHICTb

rogue HEKEPOBaHUU

rootkit PYTKIT (IporpamHi 3aco0u, 110 MPUXOBYIOTh HACIIIKA
371aMy Ta XOBAaIOTh 3aCO0H, SIKi BUKOPHCTOBYIOTh
3JIOBMUCHUKH, BiJl aHTUBIPYCHOT'O MPOTPaAMHOTO
3a0e3mneueHHs)

routine mijimporpama

routinely IIOJTHS, PETYJISIPHO, SIK 3aBEACHO

rule PaBUIIO

run BUKOHYBaTH

156

run time yac BUKOHAHHS (IIPOTrpaMH), 4yac MPOroHy (Mmporpamu)
S
sales income npuOYyTOK Bif peamizarii

sales promotion

IIPOCYBaHHS TOBApy, CTUMYJIIOBAHHS 30yTy

sales records

TOProBeJibHA CTATUCTUKA, PEECTpallisi 00CSTIB MIPOJIaKyY

scalability

PO3IIMPIOBAHICTh, MACIITA0yBaHHS

scalable processor
architecture (SPARC)

apXxIiTEeKTypa nporecopa, Ky MOKHa HapOoIlyBaTH

scale IIIKaJjia, MacIuTad

scale MaciTadyBaTu

scaling MacIITadyBaHHS, MacCIITa0HE IIEPETBOPEHHS
scenario CIICHAPI, TUIaH Jik

schedule 1) rpadik, po3kia; iaH pooiT; 2) MmIaHyBaTH
schedule rpadik

schedule CKJIaZlaTH PO3KJIaJl, TUIAaHYBaTH

scholar BYCHUI

screenshot MOMEHTaJIbHUI 3HIMOK €KpaHy

script CIICHAPIii, CKPUIIT

search engine

optimization/optimizer

ONTHUMI3allisd / ONTUMI3aTOP

IIOITYKOBUX CUCTCM

(SEO)

secure 1) 6e3neunuii; 2) OXOPOHSITH, 3aXHINATH, 3a0€31eUyBaTH,
rapas-
TyBaTH

security Oe3meka

security solution

pIIICHHS TIPO 3a0€3TMEUCHHS 3aXHUCTY

security token

MapKep J10CTYIY, TOKeH (PI3UUHUN MPUCTPIid, IKUN

HAJA€ThCS aBTOPU30BAHOMY KOPUCTYBA4€B1 3 Me-

157

TOIO CTIPUSIHHS aBTEHTHU(DIKaIIIT)

select

BUOUpATH, 100MpPaTH; KOMIUIEKTYBATH

self-paced

TaKuH, 110 JI03BOJISE€ CAMOCTINHO OOMPATH IMIBUAKICTh BUB-

YeHHs Matepiany (po y4ooBuit Kypc)

semantic backplane

cemanTuuHMM 3aaH11 o1ad (B UML 06’ eqnye Mmozens i

HAITOBHIOE ii 3MICTOM)

semantics

CEMaHTHUKa

semaphore

cemadop

senior executive

KEpIBHUK BUIIOTO PAHTy

sense

BITUYTTS

sensitive

1) wyrnuBuit; 2) KoHDiACHIIAHAMI

sensitive information

TaeMHa / KOH(DiIeHIIIiHA 1HPOpMaITis

separately

OKpPEMO

sequence

[MOCJIIIOBHICTD

sequence diagram

Jiarpama mocJiIoBHOCTEMN

sequenced

1) mocniIoBHUIA; 2) BIOPSIKOBAHUIMA

serve to

[0JlaBaTu

server cluster

CEpBEpPHHUIL KJ1acTep

set CYKYIIHICTb, Ha0ip
severely Jy’Ke, 3HaYHO, IOCUTh
severity CepHO3HICTh, KPUTUYHICTh

share (resources)

PO3IOAUIATH, CIIJILHO BUKOPUCTOBYBATH (PECYPCH)

shared lock

0JIOKyBaHHS 13 3a0€3MEYEHHAM CHUIBHOTO JOCTYMy (710

Ha0opy JaHUX)

shared memory

pO3IoiIeHa TTaM’ ATh

sheet

JUCT (TYT: TOJSPU3AIITHOTO MaTepiay)

shielding

eKpaHyBaHHS (CIOCIO 3aXUCTY MepeIaBaIbHOTO

CepeIOBHIIA BiJ] €IEKTPOMArHiTHUX 3aBajl)

158

shipping

ITOCTaBKa, BiI[HpaBJ'IeHHSI, Bi,Z[BaHTa)KeHHH

shoot(p., pp. shot)

CTPUISITH

short-range

KOPOTKOYaCHUM

shutdown

BHUMKCHH:, 3YIIMHKA

shutdown time

qac 3yIIMHKHU

significant 3HAYHHUH, BaKJIUBHH, ICTOTHHI

similar MOIIOHUM YHHOM

similar OT10HUT

similarly MOIIOHUM YHHOM

similarly TaK camo, y TOM camuii croci0, aHaJIOT19HO
simplistic CHPOILEHU I

simulation MOJICITIOBAHHS

simultaneously OJTHOYACHO

single-task(ing)

operating system

OJTHO3aJIayHa OlepalliifHa cucteMa

single-user operating

orepauiiHa CUCTeMa 1HIUBI1yalIbHOrO KOPUCTYBAaHHS

system

skills data JaHi Mpo KBatidikario

skip MPOMyCKaTH, CTpHOATH, MepecTpuOyBaTu
small-scale HEBEJIMKHUI, HE3HAYHUI

social engineering

«coIriajbHa THXKEHEPis», COIIOTEXHIKa (TaKTUKA
00 IyprOBaHHS KOPUCTYBadiB MEPEKi YU aJMIHICT-
paropa, 110 1i BAKOPUCTOBYIOTh 3JI0BMUCHUKU 3
METOI0 OTPUMAaHHS MMapoJiiB, HEOOX1THUX ISl TIPO-

HUKHEHHS Y 3aXUIIEHY CUCTEMY)

social sciences

CYCIUIbHI HAYKH

societal awareness

colianbHa (CycrniibHa) MoiH(GOPMOBAHICTh, «COITI-

eTanbHay (IIUPOKA CYCIUJIbHA), 0013HAHICTh

159

socio-technical system

COHiaHLHOTeXHOHOFi‘{Ha CHUCTCMa

socket

po3€eTKa, po3’eM, pO3HIM

software

nporpamue 3a6e3nedeHHs (I13)

software architect

po3pobHuK cTpykTypu I13, paxiBenp 3 apxiTeKTypu

cucreMm 13

software architectural

design

apxiTekTypHe npoektyBaHHs [13, mpoekTyBaHHs

apxitektypu 113

software architecture

apXxiTeKTypa MpOrpaMHOTo 3a0e3MeUCHHS

software configuration

KOH(]Irypaiiisi IporpaMHHUX 3ac001B

software construction

KoHCTpytoBaHHs [13

software design

npoekTyBaHHs 113

software design

1) mpoekryBanus [13; 2) nmpoekr 13

software detailed design

neTanbHe MpoekTyBaHHs 113

software development

life cycle

KUTTEBUH ITUKI po3pobsienns [13

software driver

IIPOTrPaMHMU ApaBeEp

software engineer

CIEIIAJIICT 3 PO3POOIEHHS MPOrPaMHOT0 3a0€3eUeHHSI

software engineering

1mxenepis 113

software intensive

system

cucrema 3 rpoMizakum 113

software interface

specification

cnerudikalis, JeTaIbHUA OMUC IPOrpaMHOro iHTepdeicy

software life cycle

>xutTeBud ki 113

software model

MOJIENb IPOrPaMHOT0 3a0€3IICUCHHS

software modelling

MOJIEJTFOBaHHS TPOrPAMHOr0 3a0€3MeYeHHs

software procedure

[porpaMHa Mnpoueaypa

software project

npoekt 113

software release

BEpCisl IPOrpaMHOro 3a0e3MeUCHHS

160

software security

3aXHCT / O6e3IeKa MporpaMHOro 3a0e3MeueHHS

software solution

1) mporpamMHuil NPOAYKT; 2) IPOrpaMHE PIILIEHHS

software system

cucrema [13, mporpamMHuii KOMILTEKC

somewhat

MEBHOIO MIpPOIO, TOYACTH, JEII0

sophisticated

CKJIQJITHM, BATOHYCHUI

sound alarm 3BYKOBE IOTIEPEINKEHHS PO HEOE3MEKY
source file BUXIIHUH (aiin
Spammer cnamep (TO#, XTO pO3CUIIa€E CIIaMm)

spatial database

po3ocepemkeHa 6a3a JJaHuX

spatial information

MPOCTOpOBa iH(POpPMAIIiifHA CHCTEMA

system

speaker I'YYHOMOBEIIb

specialized crieriaai3oBaHui

specific KOHKPETHHUI; CrIeIU(iIHIIA; OCOOTMBHIA
specifically a came, 30KpemMa, KOHKPETHO

specification

1) cnetmdikartis; 2) yacto pl TeXHIUYHI BUMOTH

specification

1) cienudikartist; 2) yrO4UHEHHs, KOHKPETU3YBaHHS

specification crenudikaris

specify BU3HAYATH, 33]1aBaTH

specify YTOYHIOBATH, JIETANIi3yBaTH, KOHKPETU3YBATH

split JIUJIMTA HA YACTUHU

split up posnoaisaTh(cs)

spoof iApOOJIATH, MAMIHATH (HAIIPUKIIA, aipecy eJIeKTPOHHOT
TIOIIITH),
IMITYBaTH

spreadsheet BeTMKOQopMaTHA (EIEKTPOHHA) TaOIUIII

spyware HporpaMHe 3a0e3MeUCHHS, IPU3HAYCHE /IS IIITUTYBaHHS 33

JisSIMHA KOPUCTYyBaya

161

staged-delivery model

KaCKaaHa MOJICJIb

stakeholder

YYaCHUK

stakeholder

pOrp. Y4aCHUK

star topology

TonoJorii «3ipkay (tonosuoriga JIOM, y akiii npuctpoi 1
KOMIT IOTE€pH 3’ €HaHI pajliaTbHUMU

JHISIMH 3 [EHTPAIBHUM BY3JIOM)

start from scratch

PO3MOYMHATH 3 HYJIS (3 YUCTOTO apKyIlia)

start time 4ac 3aIllyCKaHHs, TOYaTKOBUA MOMEHT
startup (3a)mmyck
state CTaH

state machine diagram

Jiarpama KiHI[EBOT'O aBTOMATy

State model

MOJIEJIb CTAHIB

state transition

nepexij CTaHiB

state variable

3MIHHA CTaHy

statement

orepaTop (MOBU IPOrpaMyBaHHS)

static model

cTaTHu4Ha MOACIIb

steal(p. stole, pp. stolen)

KpacTu

stealthy HETIOMITHUH, TAEMHUH, IPUXOBAHUI

step-by-step MOCTYNOBUM, CTYIIHYACTUM, TOCTATHUI

stepwise HOCTaITHUH

stereotype crepeotutl (y MoBi UML — cTBOpEeHHSI HOBUX €JIEMEHTIB
MOJIeN1 IUTSIXOM PO3MIHPEHHS (QyHKIIIOHATIBLHOCTI 0a30BUX
€JIIEMEHTIB)

still image CTaTHYHE 300paKeHHs

storage medium

HOCIH JaHUX

store

3amam’aTOBYBaTH, 30epiraTu

storehouse of

information

CHIIMKJIONE A

162

string

PSAIOK

structural architect

apXiTeKTOP-OyA1BEIbHUK

structural arrangement

CTPYKTYypa

structural perspective

CTPYKTYPHHM acCleKT

structural view

CTPYKTYPHC IPCACTAaBJICHHA

structure diagram

CTPYKTYpHa Jiiarpama

Structured Query

MOBa CTPYKTYPOBAHHUX 3alHTIB

Language (SQL)

Structured Query MOBA CTPYKTYpPOBaHUX 3anuTiB, MoBa SQL
Language (SQL)

stylus cTiryc (TIepo /I BBEACHHS TaHUX Y TUIAHIIETHUX

HOYTOYKax 1 kuneHbkoBux 1K)

subject matter

TEMAaTHKa, 3MICT

subpixel

cyOesieMeHT ,300pakeHHsI, CyOIiKCeb

subscription

IepeaoIiniara, 1mjiara HarCpCa

subsequently

3T0JIOM, ITI3HIIIE, MOTIM

subset 1 IMHOXKHUHA

substantial 1) iCTOTHHH, Ba)K/IMBH, 3HAYHHI; BEIMKHUI; 2) OCHOBHUH,
rOJIOBHUI

succeed J0CATaTH METH, MaTH YCITiX

successfully YCHIITHO

successive MOCJTiIOBHUM

sufficient JOCTaTHIN

sufficiently J0CTaTHBO, JOCTATHHOIO MipPOKO

suited MPUIATHUM, IT1IX0XKUH

summarize 1) miacymoByBatH; 2) 3BOJUTH, y3arajlibHIOBaTH

supply IIOCTAaYaTH, I101aBaTH

support MIATPUMYBATH, MiITPUMKA

163

support HiATPUMYyBaTH
surreptitious TaEMHUI

surround OTOYyBaTH

switch nepeMuKay

switch (between) epEeMHUKATH
switch on/off BMHUKATH/BUMHKATH
synchronization CHUHXPOHI3aIlis
synthesize CHHTE3yBaTH
synthesized CHUHTE30BaHUM

system call

CUCTEMHHNIN BUKJIUK

System Development
Life Cycle (SDLC)

KUTTEBUHN IIUKIT pO3pOOJICH-

Hs CUCTCMU

system implementation

peanizariisi CHCTeMHU

system mode

CUCTEMHUN PEXKUM

systemic view

CUCTCMHC IIPCACTABICHHA

T

tag

MapKyBaTH, PO3CTABIISITH TETH, CYIIPOBOKYBATH JIaHi

TCraMu

take advantage of

CKOPHUCTATUCA, BUKOPHUCTOBYBATHU

take on HaOyBaTH HOBOTO 3HAYCHHS

tamper 1) 3mamyBatu 2) nicyBatu 3) anbiryBaTH, miapooasaTu
tampering 1) ncyBanns; 2) dbanpiryBaHHs, TAPOOICHHS

tangible BiJTUyTHUH

target audience

IIIJIbOBA ayIUTOPIs

target system

[JIbOBA CHCTEMA

target user

UIbOBHUI KOPUCTYBay

task model

MOJICIb 3aBAaHHA

technique

TEXHIKa, METO/I

164

temporal relationships

4acoB1 CITIBBIIHOIIEHHS

tempt

CIIOKYIIIaTH, 3Ba0JIIOBaTH

tend to

MaTH TEHJICHIIII0, CXUIBHICTH (JI0 YOI OCh)

terminal device

TepMiHal, TePMIHAJIbHUN TPUCTPIN

test case HaO1p TECTOBUX JAaHUX, KOHTPOJIbLHUM MPUKIA]
(moxkymeHTaIbHO 0(hOPMIICHHUH TTOCIOHUK, SIKU BU3HAYAE,
AK Mae€ / Moxe OyTu nporecToBaHa (QyHKIIis a0
KOMOiHaIig QyHKI[IH)

textual TEKCTOBHM; 110 CTOCYETHCS TEKCTY

theft KpaJIiKKa

therefore TOMY, OTXKE

thought leadership

IHTEJNEKTyaJIbHE J1AEPCTBO

Thread

TIOTIK, TP

threading oprasi3zailisi TOTOKOBOTO 00po0IeHHs (TIOB1TOMIIEHb 200
JTAHHX)

threat 3arposa, Hebe3neka

throughput MIPOYKTUBHICTH; MPOITyCKHA 3/IaTHICTh

thus TaK, TAKUM YHHOM

thwart 3aBaKaTH, TEPEIIKOKATH

tick IMITYJIbC

timeliness CBOEUYACHICTH (pearyBaHHsl, MogaHHs iH(OpMaIlii B KOMIL.
CUCTEMI)

timely CBOEYACHO

timing characteristic

JacCcoBad XapaKTCPHUCTHUKA

timing data

4acoB1 MOKa3HUKH / XapaKTEPUCTUKU

timing diagram

JacoBa Jiarpama

tolerate

BUTPUMYBAaTH

toll

miaTa (3a Mmociayru)

165

toll call MDKMichKa Tele()OHHAa pO3MOBa
tool 3aci0, IHCTPYMEHT, CEpBICHA IIporpama
top down 3ropH JIOHU3Y

touch point of sth

TYT: TOYKA JOTHUKY (13 YAMOCH); IUTAHHS, 10 CTO-

CYETBHCA 40T OCh

touch screen

CEHCOpPHUM eKpaH

trace

CIIJ, O3HaKa

tracking system

CHUCTEMA CTCKCHHA

trade-offs

TUTFOCH Ta MiHYCH, OajlaHC TiepeBar 1 piBeHb HEJOJIIKIB

transaction

TpaH3akilis (caMmocTiiiHe a0o 3aBepIIeHE MOBIOMIICHHS
PO SKYCh MOAI0 a00 cTaH, 3aiKCOBAHE HA IKOMYCh
HOCI1i 1HpopMaIlii 1 Mpu3HaYEHe JJIsl 1HILIIOBaHHS onepartii

CKBJI)

transaction processing

system

cucTteMa 00poOJIeHHS TpaH3aKI[ii

transferable

SAKAN MOXE ITepeIaBaTUCS

transformation

epEeTBOPEHHS, TpaHCPopMallis

transmit

nepeaaBaTu

transparent encryption

«1po3ope» (HenomiTHe) mudpyBaHHs (He 3a-
JIEKUTH B1Jl XapaKTEPUCTUK CUCTEMU 1 HE BIUIMBAE Ha ii

HOpMaJIbHE (DYHKIIIOHYBAaHHSI)

trap BMIIIyBaTH
treat pO3IJIAIaTH, TPAKTYBATH, IHTEPIIPETYBATH
trigger IYCKOBUM CUTHAJ

trustworthiness of data

JIOCTOBIPHICTb JTAaHUX

tune

PETyIIIOBAaTH, HAJIArOA’KyBaTu

two-tier, three-tier,

multi-tier

JIBOPIBHEBUI, TPUPIBHEBUM, OararopiBHEBUN

166

typed object TUII30BaHUIN 00’ €KT

typewriter ApyKapchbKa MalTuHKa

typically 3a3BUYaii, 3BHYANHO

typically 3a3BHYai

U

ultimate OCTAaTOYHUH, KIHIIEBHUI

unanticipated HerepeadayyBaHMiA

unauthorized activity HETpaBOMipHA, HECAHKIIIOHOBAHA JIISTHHICTB,

HECAHKIIIOHOBaHI mii

unauthorized personnel | croponHiii mepcoHa, CTOPOHHI 0cOOH

unavoidably HEMUHYYE

uncomplicated HEYCKJIaJIHEHUI

undergo(p. underwent, | 3a3HaBaTH

pp. undergone)

underground HeJICTAIbHUN, CeKPETHUH, T AMTLIbHUHI

underlying TaKHMH, 1110 JIEKNATHh B OCHOBI1, OCHOBHHI, TOJIOBHUM,
0a3oBui

unforeseeable event HerependadyBaHa moIis

Unified Modelling yHiiKoBaHa MOBa MOJICIIOBAHHS

Language (UML)

Unified Modelling moBa UML, yHidikoBaHa MOBa MOJICITFOBAHHS)

Language (UML)

uniform CTaJIMiA, PiBHUMN, OJTHAKOBUH

unique VHIKaIbHHA, He3BHYaHHUH

unique value €IMHE 3HAYECHHS

unit testing TECTYBaHHS KOMITOHCHTIB CHCTEMHU

universal serial bus YHIBepcaJbHa MMOCIiI0BHA [ITUHA

(USB)

167

universal serial bus

YHiBepCaJ'IBHa HOCJ'Ii,IIOBHa IMrHa, I1MHa

(USB) USB

unlike Ha BIAMIHY BiJ

unlock 1) po3aMuKaTu, po30JI0KOBYBATH; 2) PO30JIOKYBaHHS

unwieldy TPOMI3IKUI

up to date Cy4YaCHUU, OHOBJICHU U

upgrade MOJIEpHI3yBaTH, MIOKPAITyBaTH

upgrade time yac MOJICpHI3yBaHHSI, OHOBJICHHS

upload nepecwiaty (iHGopMaIlito B KOMI FOTEp BHUILOTO PIiBHS,
HAIPUKIIAJI, 3 JIOKAJILHOTO KOMIT I0TE€pa — Ha CEPBEP)

usability 1) 3py4HICTh KOPUCTYBAHHSI; 2) MPAKTHYHICTD

usable MPUJIATHUY JIJI1 BAKOPUCTAHHSI, TPAKTUYHUN, 3pyUHUN

USB key, USB drive, dnem-HakonmuuyBad / Giem-nam’siTh

flash drive

use case nperneaeHT (y MmoBi UML — 3 normomororo npereneHTiB
MOJICITIOIOTH J1aJI0T MI’K aKTOPOM 1 CUCTEMOI0; HallIp ycix
NpeLe/IeHTIB CUCTEeMH BU3HAYa€ 11 QYHKIIOHAIBHICTh; HA
JiarpaMax IpeleeHT 300pakatoTh Y BUIIISIL €J11ca)

use case BapiaHT BUKOPUCTAHHS

use case BaplaHT BUKOPUCTAHHS

use case diagram

niarpama mipenienieHTiB (y MoBi UML — rpadiune 30-
OpakeHHs aKTOP1B, MPEIIEICHTIB Ta 1X B3aEMOIIN
y CUCTEMI; pO3pI3HSAIOTH TOJIOBHY Jlarpamy mperie-

JICHTIB 1 IOJJaTKOBI Jiarpamu)

user database

0a3a JaHUX KOPUCTYBadiB (A0OHEHTIB)

User interface

iHTepdeiic KopucTyBaya (porpamu)

user interface (Ul)

KOpUCTYBalbKuii iHTEpdeiic, inTepderic kopuctyBada

user-interface

KOPHUCTYBaIlbKU 1HTEepeiic

168

V

variable 3MiHHA
variety 1) pI3HOMaHITHICTB; 2) BIAMIHHICTh, PO301KHICTD
vary MiHSTH(CS1), 3MiHIOBATHU(CS1), BIIPI3HATUCS, BapitOBaTUCS

vector graphics

BEeKTOpHA rpadika

vendor NOCTa4YaIbHUK, TIPO/IABEIh
verification Bepudikaris

verify KOHTPOJITIOBATH, MIEPEBIPIATU
verify NepeBipsATH, KOHTPOIIOBATH

video game console

MIPUCTaBKA JJIS BIIEOIrop

video/visual display unit
(vDU)

MOHITOP, TUCTUICH

videoconferencing

BiJICOKOH(EPEHII-3B’ SI30K

view

po3riIAIaTu

view

1) Bu 2) moOTIsia, aCMeKT, TOYKa 30py

view in person

NeperasgaTu 0COOMCTO

viewer rsaaay

violate MOPYIIYBaTH
violation TOpYIIECHHS

virtual item BIpTYyaJIbHHI €JIEMEHT

vision-impaired

3 BaJlaMU 30py

visualize HAOYHO NPE3EHTYBATH, Bi3yali3yBaTu

vogue HOIYJIIPHICTh, IIUPOKE 3aCTOCYBAHHS

voice malil r0JIOCOBA ITOIITA; aBTOBIANIOBIgaY KOMITaHIT

voltage Hampyra

Vs MPOTH, BITHOCHO, 3aMICTh

Vulnerability cimabKe MicIie, Bpa3IuBICTh, YYTJIMBICTD (II[0JI0 YOTOCh)
W

169

wakeup

aKTHUB13a1lis

wall-sized

PO3MIpOM 31 CTIHY

waterfall model

BOAOCIIagHA MOJICIIb

weak

CclIa0OKuit

web browser

Opay3sep, nporpama BeO-Tmeperiisiiy, HaBiraTop

web crawler HOIIYKOBHI areHT, «IaByK»
web server BeO-cepBep
web-enabled Be0-0Opi€HTOBAHUIA

well-documented

IMMEPEKOHIINBO HiJITBep,Z[)KeHI/Iﬁ AOKYMCHTAJIbHUMHA

JOKa3aMu
whenever KOXKHOT'O pa3y, KOJIH; Iopa3y, Kojiu 0 He
while B TOM 4ac SIK; TOM1 SIK

wire JPIT, IPOBIi

with respect to

BITHOCHO

withstand

IIPOTUCTOATH, BUTPUMYBATHU

word processing

00pOOJICHHS TEKCTIB

work site

poOoue micile, 00’ €KT (BUKOHAHHS POOIT)

work system

TYT: BUPOOHUYA cHCTEMA

workflow TIOCJTIJTOBHICTh OTECpaIlii

workflow TPYIOBUI TIPOIIEC

World (WWW) «BcecBiTHE TaBYTHHHSI», TI100aJIbHA TIEPTEKCTOBA
cucrema Internet

worm 4yepB’sK (mporpama, o caMOCTIHHO MOLIUPIOE CBOI KOMIT
MEPEXKEIO)

write lock OJIOKYBaHHS 3aIHCY

write time qac 3armcy

X

XQuery nepexpecHa MoBa 3aIuTiB

170

yield JaBaTH Pe3yJIbTaT
Z
ZIP HaNHOUIbII MOMIMPEHUN CTaHAPT YUIUIbHEHHS; (hopMar

apxiBiB Ha FTP

(File Transfer Protocol)-cepsepax

171

LITERATURE

. ITPOMIAKOB E.M., TEIUTULEKUM JI.A. AHTJI0-YKPATHCbKUI TIIYMAUYHUI CJIOBHHI 3
OBUNCJIIOBAJIBHOI TEXHIKU, IHTEPHETY I IIPOTPAMYBAHHSA. Bu. K.: BUJABH. 1M
“Coot-IIPEC”, 2005. 552 C.

. CAMMEPBUJI U. MHXEHEPUS [TPOTPAMMHOI'O OBECIEYEHUS. M.: BuiibsMc, 2002.
620 C.

. CuzoroB M.O. BCTVII IO IIPOTPAMHOI IHXXEHEPIi: KOHCIEKT JIEKLI. K.: HAY,
2009.130c.

. GLENDINNING E.H., MCEWAN J. OXFORD ENGLISH FOR INFORMATION TECHNOLOGY.
OXFORD PRESS, 2003. 222 p.

. SIDOROV M.O. SOFTWARE ENGINEERING. LECTURE COURSE. KYIV: NAU, 2007.139P.
. WIEGERS K. CREATING A SOFTWARE ENGINEERING CULTURE. DORSET HOUSE PUBL.
NEW YORK, 2003. 358 p.

. WILKINSON G.G., WINTERFLOOD A.R. FUNDAMENTALS OF INFORMATION
TECHNOLOGY. CHICHESTER: JOHN WILEY AND SONS, 1987. 363 .
HTTP://WWW.WIKIPEDIA.COM

172

